ترغب بنشر مسار تعليمي؟ اضغط هنا

Higgs-mass predictions in the MSSM and beyond

105   0   0.0 ( 0 )
 نشر من قبل Pietro Slavich
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Predictions for the Higgs masses are a distinctive feature of supersymmetric extensions of the Standard Model, where they play a crucial role in constraining the parameter space. The discovery of a Higgs boson and the remarkably precise measurement of its mass at the LHC have spurred new efforts aimed at improving the accuracy of the theoretical predictions for the Higgs masses in supersymmetric models. The Precision SUSY Higgs Mass Calculation Initiative (KUTS) was launched in 2014 to provide a forum for discussions between the different groups involved in these efforts. This report aims to present a comprehensive overview of the current status of Higgs-mass calculations in supersymmetric models, to document the many advances that were achieved in recent years and were discussed during the KUTS meetings, and to outline the prospects for future improvements in these calculations.



قيم البحث

اقرأ أيضاً

81 - Henning Bahl 2019
Different approaches are used for the calculation of the SM-like Higgs boson mass in the MSSM: the fixed-order diagrammatic approach is accurate for low SUSY scales; the EFT approach,for high SUSY scales. Hybrid approaches, combining fixed-order and EFT calculations, allow to obtain a precise prediction also for intermediary SUSY scales. Here, we briefly discuss the hybrid approach implemented into the code FeynHiggs. In addition, we show how the refined Higgs mass prediction was used to define new MSSM Higgs benchmark scenarios.
The recent results from the ATLAS and CMS collaborations show that the allowed range for a Standard Model Higgs boson is now restricted to a very thin region. Although those limits are presented exclusively in the framework of the SM, the searches th emselves remain sensitive to other Higgs models. We recast the limits within a generic supersymmetric framework that goes beyond the usual minimal extension. Such a generic model can be parameterised through a supersymmetric effective Lagrangian with higher order operators appearing in the Kahler potential and the superpotential, an approach whose first motivation is to alleviate the fine-tuning problem in supersymmetry with the most dramatic consequence being a substantial increase in the mass of the lightest Higgs boson as compared to the minimal supersymmetic model. We investigate in this paper the constraints set by the LHC on such models. We also investigate how the present picture will change when gathering more luminosity. Issues of how to combine and exploit data from the LHC dedicated to searches for the standard model Higgs to such supersymmetry inspired scenarios are discussed. We also discuss the impact of invisible decays of the Higgs in such scenarios.
For the interpretation of the signal discovered in the Higgs searches at the LHC it will be crucial in particular to discriminate between the minimal Higgs sector realised in the Standard Model (SM) and its most commonly studied extension, the Minima l Supersymmetric SM (MSSM). The measured mass value, having already reached the level of a precision observable with an experimental accuracy of about 500 MeV, plays an important role in this context. In the MSSM the mass of the light CP-even Higgs boson, M_h, can directly be predicted from the other parameters of the model. The accuracy of this prediction should at least match the one of the experimental result. The relatively high mass value of about 126 GeV has led to many investigations where the scalar top quarks are in the multi-TeV range. We improve the prediction for M_h in the MSSM by combining the existing fixed-order result, comprising the full one-loop and leading and subleading two-loop corrections, with a resummation of the leading and subleading logarithmic contributions from the scalar top sector to all orders. In this way for the first time a high-precision prediction for the mass of the light CP-even Higgs boson in the MSSM is possible all the way up to the multi-TeV region of the relevant supersymmetric particles. The results are included in the code FeynHiggs.
We study the production of scalar and pseudoscalar Higgs bosons via gluon fusion and bottom-quark annihilation in the MSSM. Relying on the NNLO-QCD calculation implemented in the public code SusHi, we provide precise predictions for the Higgs-product ion cross section in six benchmark scenarios compatible with the LHC searches. We also provide a detailed discussion of the sources of theoretical uncertainty in our calculation. We examine the dependence of the cross section on the renormalization and factorization scales, on the precise definition of the Higgs-bottom coupling and on the choice of PDFs, as well as the uncertainties associated to our incomplete knowledge of the SUSY contributions through NNLO. In particular, a potentially large uncertainty originates from uncomputed higher-order QCD corrections to the bottom-quark contributions to gluon fusion.
The remaining theoretical uncertainties from unknown higher-order corrections in the prediction for the light Higgs-boson mass of the MSSM are estimated. The uncertainties associated with three different approaches that are implemented in the publicl y available code FeynHiggs are compared: the fixed-order diagrammatic approach, suitable for low SUSY scales, the effective field theory (EFT) approach, suitable for high SUSY scales, and the hybrid approach which combines the fixed-order and the EFT approaches. It is demonstrated for a simple single-scale scenario that the result based on the hybrid approach yields a precise prediction for low, intermediate and high SUSY scales with a theoretical uncertainty of up to $sim 1.5$ GeV for large stop mixing and $sim 0.5$ GeV for small stop mixing. The uncertainty estimate of the hybrid calculation approaches the uncertainty estimate of the fixed-order result for low SUSY scales and the uncertainty estimate of the EFT approach for high SUSY scales, while for intermediate scales it is reduced compared to both of the individual results. The estimate of the theoretical uncertainty is also investigated in scenarios with more than one mass scale. A significantly enhanced uncertainty is found in scenarios where the gluino is substantially heavier than the scalar top quarks. The uncertainty estimate presented in this paper will be part of the public code FeynHiggs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا