ﻻ يوجد ملخص باللغة العربية
We consider the operation of sum on Kripke frames, where a family of frames-summands is indexed by elements of another frame. In many cases, the modal logic of sums inherits the finite model property and decidability from the modal logic of summands. In this paper we show that, under a general condition, the satisfiability problem on sums is polynomial space Turing reducible to the satisfiability problem on summands. In particular, for many modal logics decidability in PSPACE is an immediate corollary from the semantic characterization of the logic.
For formulas F of propositional calculus I introduce a metavariable MF and show how it can be used to define an algorithm for testing satisfiability. MF is a formula which is true/false under all possible truth assignments iff F is satisfiable/unsati
Finite-domain constraint satisfaction problems are either solvable by Datalog, or not even expressible in fixed-point logic with counting. The border between the two regimes coincides with an important dichotomy in universal algebra; in particular, t
This report introduces and investigates a family of metrics on sets of pointed Kripke models. The metrics are generalizations of the Hamming distance applicable to countably infinite binary strings and, by extension, logical theories or semantic stru
The solution-space structure of the 3-Satisfiability Problem (3-SAT) is studied as a function of the control parameter alpha (ratio of number of clauses to the number of variables) using numerical simulations. For this purpose, one has to sample the
Efficient solutions to NP-complete problems would significantly benefit both science and industry. However, such problems are intractable on digital computers based on the von Neumann architecture, thus creating the need for alternative solutions to