Connecting complex networks to nonadditive entropies


الملخص بالإنكليزية

Boltzmann-Gibbs statistical mechanics applies satisfactorily to a plethora of systems. It fails however for complex systems generically involving strong space-time entanglement. Its generalization based on nonadditive $q$-entropies adequately handles a wide class of such systems. We show here that scale-invariant networks belong to this class. We numerically study a $d$-dimensional geographically located network with weighted links and exhibit its energy distribution per site at its quasi-stationary state. Our results strongly suggest a correspondence between the random geometric problem and a class of thermal problems within the generalised thermostatistics. The Boltzmann-Gibbs exponential factor is generically substituted by its $q$-generalisation, and is recovered in the $q=1$ limit when the nonlocal effects fade away. The present connection should cross-fertilise experiments in both research areas.

تحميل البحث