ﻻ يوجد ملخص باللغة العربية
The MeerKAT Exploration of Relics, Giant Halos, and Extragalactic Radio Sources (MERGHERS) survey is a planned project to study a large statistical sample of galaxy clusters with the MeerKAT observatory. Here we present the results of a 16--hour pilot project, observed in response to the 2019 MeerKAT Shared Risk proposal call, to test the feasibility of using MeerKAT for a large cluster study using short (0.2--2.1,hour) integration times. The pilot focuses on 1.28,GHz observations of 13 massive, low-to-intermediate redshift ($0.22 < z < 0.65$) clusters from the Sunyaev-Zeldovich-selected Atacama Cosmology Telescope (ACT) DR5 catalogue that show multiwavelength indications of dynamical disturbance. With a 70 per cent detection rate (9/13 clusters), this pilot study validates our proposed MERGHERS observing strategy and provides twelve detections of diffuse emission, eleven of them new, indicating the strength of MeerKAT for such types of studies. The detections (signal-to-noise ratio $gtrsim6$) are summarised as follows: two systems host both relic(s) and a giant radio halo, five systems host radio halos, and two have candidate radio halos. Power values, $k$-corrected to 1.4 GHz assuming a fiducial spectral index of $alpha = -1.3 pm 0.4$, are consistent with known radio halo and relic scaling relations.
The MeerKAT telescope will be one of the most sensitive radio arrays in the pre-SKA era. Here we discuss a low-frequency SZ-selected cluster survey with MeerKAT, the MeerKAT Extended Relics, Giant Halos, and Extragalactic Radio Sources (MERGHERS) sur
We present a detection-significance-limited catalog of 21 Sunyaev-Zeldovich selected galaxy clusters. These clusters, along with 1 unconfirmed candidate, were identified in 178 deg^2 of sky surveyed in 2008 by the South Pole Telescope to a depth of 1
We present follow-up observations with the Sunyaev-Zeldovich Array (SZA) of optically-confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+001
We used optical imaging and spectroscopic data to derive substructure estimates for local Universe ($z < 0.11$) galaxy clusters from two different samples. The first was selected through the Sunyaev-Zeldovich (SZ) effect by the Planck satellite and t
The masses of galaxy clusters are a key tool to constrain cosmology through the physics of large-scale structure formation and accretion. Mass estimates based on X-ray and Sunyaev--Zeldovich measurements have been found to be affected by the contribu