ﻻ يوجد ملخص باللغة العربية
Scalability is a common issue among the most used permissionless blockchains, and several approaches have been proposed accordingly. As Ethereum is set to be a solid foundation for a decentralized Internet web, the need for tackling scalability issues while preserving the security of the network is an important challenge. In order to successfully deliver effective scaling solutions, Ethereum is on the path of a major protocol improvement called Ethereum 2.0 (Eth2), which implements sharding. As the change of consensus mechanism is an extremely delicate matter, this improvement will be achieved through different phases, the first of which is the implementation of the Beacon Chain. For this, a specification has been developed and multiple groups have implemented clients to run the new protocol. In this work, we analyse the resource usage behaviour of different clients running as Eth2 nodes, comparing their performance and analysing differences. Our results show multiple network perturbations and how different clients react to it.
The error-correction code based proof-of-work (ECCPoW) algorithm is based on a low-density parity-check (LDPC) code. The ECCPoW is possible to impair ASIC with its time-varying capability of the parameters of LDPC code. Previous researches on the ECC
Smart contracts are programs running on cryptocurrency (e.g., Ethereum) blockchains, whose popularity stem from the possibility to perform financial transactions, such as payments and auctions, in a distributed environment without need for any truste
Clients of permissionless blockchain systems, like Bitcoin, rely on an underlying peer-to-peer network to send and receive transactions. It is critical that a client is connected to at least one honest peer, as otherwise the client can be convinced t
As the most popular blockchain that supports smart contracts, there are already more than 296 thousand kinds of cryptocurrencies built on Ethereum. However, not all cryptocurrencies can be controlled by users. For example, some money is permanently l
Recent attacks exploiting errors in smart contract code had devastating consequences thereby questioning the benefits of this technology. It is currently highly challenging to fix errors and deploy a patched contract in time. Instant patching is espe