ﻻ يوجد ملخص باللغة العربية
As a scene graph compactly summarizes the high-level content of an image in a structured and symbolic manner, the similarity between scene graphs of two images reflects the relevance of their contents. Based on this idea, we propose a novel approach for image-to-image retrieval using scene graph similarity measured by graph neural networks. In our approach, graph neural networks are trained to predict the proxy image relevance measure, computed from human-annotated captions using a pre-trained sentence similarity model. We collect and publish the dataset for image relevance measured by human annotators to evaluate retrieval algorithms. The collected dataset shows that our method agrees well with the human perception of image similarity than other competitive baselines.
In this paper, we investigate the problem of retrieving images from a database based on a multi-modal (image-text) query. Specifically, the query text prompts some modification in the query image and the task is to retrieve images with the desired mo
In this paper, we developed the system for recognizing the orchid species by using the images of flower. We used MSRM (Maximal Similarity based on Region Merging) method for segmenting the flower object from the background and extracting the shape fe
Traditional image recognition involves identifying the key object in a portrait-type image with a single object focus (ILSVRC, AlexNet, and VGG). More recent approaches consider dense image recognition - segmenting an image with appropriate bounding
In this paper we study the problem of content-based image retrieval. In this problem, the most popular performance measure is the top precision measure, and the most important component of a retrieval system is the similarity function used to compare
Image manipulation can be considered a special case of image generation where the image to be produced is a modification of an existing image. Image generation and manipulation have been, for the most part, tasks that operate on raw pixels. However,