ﻻ يوجد ملخص باللغة العربية
Given a $T_0$ paratopological group $G$ and a class $mathcal C$ of continuous homomorphisms of paratopological groups, we define the $mathcal C$-$semicompletion$ $mathcal C[G)$ and $mathcal C$-$completion$ $mathcal C[G]$ of the group $G$ that contain $G$ as a dense subgroup, satisfy the $T_0$-separation axiom and have certain universality properties. For special classes $mathcal C$, we present some necessary and sufficient conditions on $G$ in order that the (semi)completions $mathcal C[G)$ and $mathcal C[G]$ be Hausdorff. Also, we give an example of a Hausdorff paratopological abelian group $G$ whose $mathcal C$-semicompletion $mathcal C[G)$ fails to be a $T_1$-space, where $mathcal C$ is the class of continuous homomorphisms of sequentially compact topological groups to paratopological groups. In particular, the group $G$ contains an $omega$-bounded sequentially compact subgroup $H$ such that $H$ is a topological group but its closure in $G$ fails to be a subgroup.
The concept of gyrogroups is a generalization of groups which do not explicitly have associativity. Recently, Atiponrat extended the idea of topological (paratopological) groups to topological (paratopological) gyrogroups. In this paper, we prove tha
We prove continuity results for abstract epimorphisms of locally compact groups onto finitely generated groups.
We completely describe the finitely generated pro-$p$ subgroups of the profinite completion of the fundamental group of an arbitrary $3$-manifold. We also prove a pro-$p$ analogue of the main theorem of Bass--Serre theory for finitely generated pro-$p$ groups.
Given a group $X$ we study the algebraic structure of the compact right-topological semigroup $lambda(X)$ consisting of maximal linked systems on $X$. This semigroup contains the semigroup $beta(X)$ of ultrafilters as a closed subsemigroup. We constr
We classify the boundaries of hyperbolic groups that have enough quasiconvex codimension-1 surface subgroups with trivial or cyclic intersections.