ترغب بنشر مسار تعليمي؟ اضغط هنا

Jets as a probe of the quark-gluon plasma

214   0   0.0 ( 0 )
 نشر من قبل Jasmine Brewer
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Jasmine Brewer




اسأل ChatGPT حول البحث

The suppression and modification of high-energy objects, like jets, in heavy-ion collisions provide an important window to access the degrees of freedom of the quark-gluon plasma on different length scales. Despite increasingly precise and differential measurements of the properties of jets in heavy-ion collisions, however, it has remained challenging to use jets to make unambiguous and model-independent statements about the quark-gluon plasma. Here I will give a personal take on some origins of these challenges, including the difficulty of modelling and biases from jet selection that obfuscate the direct interpretation of jet modification measurements. I will discuss a few model studies that have helped to disentangle the source of non-intuitive effects in measurements, and finally highlight data-driven approaches as an interesting opportunity toward studying the quark-gluon plasma in a model-independent way using jets.



قيم البحث

اقرأ أيضاً

Jets are a promising way to probe the non-equilibrium physics of quark-gluon plasma (QGP). We study how an out-of-equilibrium medium induces a jet particle to emit gluons. Evaluation of the emission rate is complicated by Weibel instabilities which l ead to an exponential growth of chromomagnetic fields. Deriving a quantum field theoretical description of an unstable QGP medium, we show that the chromomagnetic fields deflect jet particles during the gluon emission.
Charmonium directed flows are studied based on transport model coupled with the realistic three dimensional expansions of the bulk medium. The non-central symmetric nucleus-nucleus collisions can generate the rotating quark-gluon plasma (QGP) with sy mmetry-breaking longitudinal distributions. In $sqrt{s_{NN}}=200$ GeV Au-Au semi-central collisions, charmonium are primordially produced in the initial hard process, they are mainly dissociated by the initial tilted source with high temperatures and then move out of the bulk medium to keep the early information of the medium. Charmonia are less affected by the hydrodynamic expansions of QGP where its tilted shape is being diluted. This biased dissociation can generate directed flows of $J/psi$ and $psi(2S)$ which are much larger than the values of light charged hadrons and open heavy flavor. They are sensitive and clean to the effect of QGP rapidity-odd initial energy densities.
Photons are a penetrating probe of the hot medium formed in heavy-ion collisions, but they are emitted from all collision stages. At photon energies below 2-3 GeV, the measured photon spectra are approximately exponential and can be characterized by their inverse logarithmic slope, often called effective temperature $T_mathrm{eff}$. Modelling the evolution of the radiating medium hydrodynamically, we analyze the factors controlling the value of $T_mathrm{eff}$ and how it is related to the evolving true temperature $T$ of the fireball. We find that at RHIC and LHC energies most photons are emitted from fireball regions with $T{,sim,}T_mathrm{c}$ near the quark-hadron phase transition, but that their effective temperature is significantly enhanced by strong radial flow. Although a very hot, high pressure early collision stage is required for generating this radial flow, we demonstrate that the experimentally measured large effective photon temperatures $T_mathrm{eff}{,>,}T_mathrm{c}$, taken alone, do not prove that any electromagnetic radiation was actually emitted from regions with true temperatures well above $T_mathrm{c}$. We explore tools that can help to provide additional evidence for the relative weight of photon emission from the early quark-gluon and late hadronic phases. We find that the recently measured centrality dependence of the total thermal photon yield requires a larger contribution from late emission than presently encoded in our hydrodynamic model.
We employ new field-theoretical tools to study photons and jets in a non-equilibrium quark-gluon plasma. Jet broadening and photon emission takes place through radiation which is suppressed by repeated and coherent interaction with the medium. We ana lyze this physics in an anisotropic plasma such as is created in the early stages of heavy-ion collisions. The anisotropy introduces an angular dependence in radiation and reduces its overall rate. This can affect phenomenological predictions of the rapidity dependence and angular flow of jets and photons.
246 - Berndt Muller 2021
Brief review of the hadronic probes that are used to diagnose the quark-gluon plasma produced in relativistic heavy ion collisions and interrogate its properties. Emphasis is placed on probes that have significantly impacted our understanding of the nature of the quark-gluon plasma and confirmed its formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا