ﻻ يوجد ملخص باللغة العربية
We propose a Nekrasov-type formula for the instanton partition functions of four-dimensional N=2 U(2) gauge theories coupled to (A_1,D_{2n}) Argyres-Douglas theories. This is carried out by extending the generalized AGT correspondence to the case of U(2) gauge group, which requires us to define irregular states of the direct sum of Virasoro and Heisenberg algebras. Using our formula, one can evaluate the contribution of the (A_1,D_{2n}) theory at each fixed point on the U(2) instanton moduli space. As an application, we evaluate the instanton partition function of the (A_3,A_3) theory to find it in a peculiar relation to that of SU(2) gauge theory with four fundamental flavors. From this relation, we read off how the S-duality group acts on the UV gauge coupling of the (A_3,A_3) theory.
We make a preliminary investigation into twisted $A_{2n}$ theories of class S. Contrary to a common piece of folklore, we establish that theories of this type realise a variety of models of Argyres-Douglas type while utilising only regular punctures.
We construct a new class of three-dimensional topological quantum field theories (3d TQFTs) by considering generalized Argyres-Douglas theories on $S^1 times M_3$ with a non-trivial holonomy of a discrete global symmetry along the $S^1$. For the mini
We compute the Schur index of Argyres-Douglas theories of type $(A_{N-1},A_{M-1})$ with surface operators inserted, via the Higgsing prescription proposed by D. Gaiotto, L. Rastelli and S. S. Razamat. These surface operators are obtained by turning o
We use Coulomb branch indices of Argyres-Douglas theories on $S^1 times L(k,1)$ to quantize moduli spaces ${cal M}_H$ of wild/irregular Hitchin systems. In particular, we obtain formulae for the wild Hitchin characters -- the graded dimensions of the
Argyres-Douglas theories constitute an important class of superconformal field theories in $4$d. The main focus of this paper is on two infinite families of such theories, known as $D^b_p(mathrm{SO}(2N))$ and $(A_m, D_n)$. We analyze in depth their c