ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual-Refinement: Joint Label and Feature Refinement for Unsupervised Domain Adaptive Person Re-Identification

113   0   0.0 ( 0 )
 نشر من قبل Yongxing Dai
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Unsupervised domain adaptive (UDA) person re-identification (re-ID) is a challenging task due to the missing of labels for the target domain data. To handle this problem, some recent works adopt clustering algorithms to off-line generate pseudo labels, which can then be used as the supervision signal for on-line feature learning in the target domain. However, the off-line generated labels often contain lots of noise that significantly hinders the discriminability of the on-line learned features, and thus limits the final UDA re-ID performance. To this end, we propose a novel approach, called Dual-Refinement, that jointly refines pseudo labels at the off-line clustering phase and features at the on-line training phase, to alternatively boost the label purity and feature discriminability in the target domain for more reliable re-ID. Specifically, at the off-line phase, a new hierarchical clustering scheme is proposed, which selects representative prototypes for every coarse cluster. Thus, labels can be effectively refined by using the inherent hierarchical information of person images. Besides, at the on-line phase, we propose an instant memory spread-out (IM-spread-out) regularization, that takes advantage of the proposed instant memory bank to store sample features of the entire dataset and enable spread-out feature learning over the entire training data instantly. Our Dual-Refinement method reduces the influence of noisy labels and refines the learned features within the alternative training process. Experiments demonstrate that our method outperforms the state-of-the-art methods by a large margin.



قيم البحث

اقرأ أيضاً

Unsupervised domain adaptive (UDA) person re-identification (ReID) aims to transfer the knowledge from the labeled source domain to the unlabeled target domain for person matching. One challenge is how to generate target domain samples with reliable labels for training. To address this problem, we propose a Disentanglement-based Cross-Domain Feature Augmentation (DCDFA) strategy, where the augmented features characterize well the target and source domain data distributions while inheriting reliable identity labels. Particularly, we disentangle each sample feature into a robust domain-invariant/shared feature and a domain-specific feature, and perform cross-domain feature recomposition to enhance the diversity of samples used in the training, with the constraints of cross-domain ReID loss and domain classification loss. Each recomposed feature, obtained based on the domain-invariant feature (which enables a reliable inheritance of identity) and an enhancement from a domain specific feature (which enables the approximation of real distributions), is thus an ideal augmentation. Extensive experimental results demonstrate the effectiveness of our method, which achieves the state-of-the-art performance.
Unsupervised Domain Adaptive (UDA) person re-identification (ReID) aims at adapting the model trained on a labeled source-domain dataset to a target-domain dataset without any further annotations. Most successful UDA-ReID approaches combine clusterin g-based pseudo-label prediction with representation learning and perform the two steps in an alternating fashion. However, offline interaction between these two steps may allow noisy pseudo labels to substantially hinder the capability of the model. In this paper, we propose a Group-aware Label Transfer (GLT) algorithm, which enables the online interaction and mutual promotion of pseudo-label prediction and representation learning. Specifically, a label transfer algorithm simultaneously uses pseudo labels to train the data while refining the pseudo labels as an online clustering algorithm. It treats the online label refinery problem as an optimal transport problem, which explores the minimum cost for assigning M samples to N pseudo labels. More importantly, we introduce a group-aware strategy to assign implicit attribute group IDs to samples. The combination of the online label refining algorithm and the group-aware strategy can better correct the noisy pseudo label in an online fashion and narrow down the search space of the target identity. The effectiveness of the proposed GLT is demonstrated by the experimental results (Rank-1 accuracy) for Market1501$to$DukeMTMC (82.0%) and DukeMTMC$to$Market1501 (92.2%), remarkably closing the gap between unsupervised and supervised performance on person re-identification.
261 - Qi Wang , Sikai Bai , Junyu Gao 2021
Person re-identification (re-ID) has gained more and more attention due to its widespread applications in intelligent video surveillance. Unfortunately, the mainstream deep learning methods still need a large quantity of labeled data to train models, and annotating data is an expensive work in real-world scenarios. In addition, due to domain gaps between different datasets, the performance is dramatically decreased when re-ID models pre-trained on label-rich datasets (source domain) are directly applied to other unlabeled datasets (target domain). In this paper, we attempt to remedy these problems from two aspects, namely data and methodology. Firstly, we develop a data collector to automatically generate synthetic re-ID samples in a computer game, and construct a data labeler to simultaneously annotate them, which free humans from heavy data collections and annotations. Based on them, we build two synthetic person re-ID datasets with different scales, GSPR and mini-GSPR datasets. Secondly, we propose a synthesis-based multi-domain collaborative refinement (SMCR) network, which contains a synthetic pretraining module and two collaborative-refinement modules to implement sufficient learning for the valuable knowledge from multiple domains. Extensive experiments show that our proposed framework obtains significant performance improvements over the state-of-the-art methods on multiple unsupervised domain adaptation tasks of person re-ID.
The majority of existing Unsupervised Domain Adaptation (UDA) methods presumes source and target domain data to be simultaneously available during training. Such an assumption may not hold in practice, as source data is often inaccessible (e.g., due to privacy reasons). On the contrary, a pre-trained source model is always considered to be available, even though performing poorly on target due to the well-known domain shift problem. This translates into a significant amount of misclassifications, which can be interpreted as structured noise affecting the inferred target pseudo-labels. In this work, we cast UDA as a pseudo-label refinery problem in the challenging source-free scenario. We propose a unified method to tackle adaptive noise filtering and pseudo-label refinement. A novel Negative Ensemble Learning technique is devised to specifically address noise in pseudo-labels, by enhancing diversity in ensemble members with different stochastic (i) input augmentation and (ii) feedback. In particular, the latter is achieved by leveraging the novel concept of Disjoint Residual Labels, which allow diverse information to be fed to the different members. A single target model is eventually trained with the refined pseudo-labels, which leads to a robust performance on the target domain. Extensive experiments show that the proposed method, named Adaptive Pseudo-Label Refinement, achieves state-of-the-art performance on major UDA benchmarks, such as Digit5, PACS, Visda-C, and DomainNet, without using source data at all.
Recent works show that mean-teaching is an effective framework for unsupervised domain adaptive person re-identification. However, existing methods perform contrastive learning on selected samples between teacher and student networks, which is sensit ive to noises in pseudo labels and neglects the relationship among most samples. Moreover, these methods are not effective in cooperation of different teacher networks. To handle these issues, this paper proposes a Graph Consistency based Mean-Teaching (GCMT) method with constructing the Graph Consistency Constraint (GCC) between teacher and student networks. Specifically, given unlabeled training images, we apply teacher networks to extract corresponding features and further construct a teacher graph for each teacher network to describe the similarity relationships among training images. To boost the representation learning, different teacher graphs are fused to provide the supervise signal for optimizing student networks. GCMT fuses similarity relationships predicted by different teacher networks as supervision and effectively optimizes student networks with more sample relationships involved. Experiments on three datasets, i.e., Market-1501, DukeMTMCreID, and MSMT17, show that proposed GCMT outperforms state-of-the-art methods by clear margin. Specially, GCMT even outperforms the previous method that uses a deeper backbone. Experimental results also show that GCMT can effectively boost the performance with multiple teacher and student networks. Our code is available at https://github.com/liu-xb/GCMT .
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا