ﻻ يوجد ملخص باللغة العربية
As a variant of standard convolution, a dilated convolution can control effective receptive fields and handle large scale variance of objects without introducing additional computational costs. To fully explore the potential of dilated convolution, we proposed a new type of dilated convolution (referred to as inception convolution), where the convolution operations have independent dilation patterns among different axes, channels and layers. To develop a practical method for learning complex inception convolution based on the data, a simple but effective search algorithm, referred to as efficient dilation optimization (EDO), is developed. Based on statistical optimization, the EDO method operates in a low-cost manner and is extremely fast when it is applied on large scale datasets. Empirical results validate that our method achieves consistent performance gains for image recognition, object detection, instance segmentation, human detection, and human pose estimation. For instance, by simply replacing the 3x3 standard convolution in the ResNet-50 backbone with inception convolution, we significantly improve the AP of Faster R-CNN from 36.4% to 39.2% on MS COCO.
We propose a universal building block of Convolutional Neural Network (ConvNet) to improve the performance without any inference-time costs. The block is named Diverse Branch Block (DBB), which enhances the representational capacity of a single convo
Self-driving cars need to understand 3D scenes efficiently and accurately in order to drive safely. Given the limited hardware resources, existing 3D perception models are not able to recognize small instances (e.g., pedestrians, cyclists) very well
Fast methods for convolution and correlation underlie a variety of applications in computer vision and graphics, including efficient filtering, analysis, and simulation. However, standard convolution and correlation are inherently limited to fixed fi
Exploiting convolutional neural networks for point cloud processing is quite challenging, due to the inherent irregular distribution and discrete shape representation of point clouds. To address these problems, many handcrafted convolution variants h
LiDAR point-cloud segmentation is an important problem for many applications. For large-scale point cloud segmentation, the textit{de facto} method is to project a 3D point cloud to get a 2D LiDAR image and use convolutions to process it. Despite the