ﻻ يوجد ملخص باللغة العربية
Inverse design of nanoparticles for desired scattering spectra and dynamic switching between the two opposite scattering anomalies, i.e. superscattering and invisibility, is important in realizing cloaking, sensing and functional devices. However, traditionally the design process is quite complicated, which involves complex structures with many choices of synthetic constituents and dispersions. Here, we demonstrate that a well-trained deep-learning neural network can handle these issues efficiently, which can not only forwardly predict scattering spectra of multilayer nanoparticles with high precision, but also inversely design the required structural and material parameters efficiently. Moreover, we show that the neural network is capable of finding out multi-wavelength invisibility-to-superscattering switching points at the desired wavelengths in multilayer nanoparticles composed of metals and phase-change materials. Our work provides a useful solution of deep learning for inverse design of nanoparticles with dynamic scattering spectra by using phase-change materials.
Phase-change materials (PCMs) can switch between different crystalline states as a function of an external bias, offering a pronounced change of their dielectric function. In order to take full advantage of these features for active photonics and inf
We demonstrate here a controllable variation in the Casimir force. Changes in the force of up to 20% at separations of ~100 nm between Au and AgInSbTe (AIST) surfaces were achieved upon crystallization of an amorphous sample of AIST. This material is
Reconfigurable photonic systems featuring minimal power consumption are crucial for integrated optical devices in real-world technology. Current active devices available in foundries, however, use volatile methods to modulate light, requiring a const
A deep learning-based wavelength controllable forward prediction and inverse design model of nanophotonic devices is proposed. Both the target time-domain and wavelength-domain information can be utilized simultaneously, which enables multiple functi
Structural colors generated due to light scattering from static all-dielectric metasurfaces have successfully enabled high-resolution, high-saturation and wide-gamut color printing applications. Despite recent advances, most demonstrations of these s