ﻻ يوجد ملخص باللغة العربية
Using next-to-leading order (NLO) perturbative QCD, we calculate the diffractive contribution to inclusive dijet photoproduction in Pb-Pb ultraperipheral collisions (UPCs) at the LHC and find that it does not exceed 5% in small-$x_A$ bins in the ATLAS kinematics at $sqrt{s_{NN}}=5.02$ TeV. Its smallness is a result of the restricted kinematics ($p_{T1} > 20$ GeV and $x_A > 0.001$) and the large nuclear suppression of nuclear diffractive parton distribution functions predicted in the leading twist model of nuclear shadowing. Thus, in an analysis of new constraints on nuclear parton distribution functions (PDFs) at small $x_A$ using the LHC data on inclusive dijet photoproduction in heavy-ion UPCs, one can safely neglect the correction factor due to the excluded diffractive contribution. At the same time, applying our framework to proton-proton UPCs at $sqrt{s_{NN}}=13$ TeV, we find that the ratio of the diffractive and inclusive cross sections of dijet photoproduction can reach $20-25$% for $x_p sim 5 times 10^{-5}$.
We present a next-to-leading order QCD calculation of inclusive dijet photoproduction in ultraperipheral Pb-Pb collisions at the LHC and show that the results agree very well with various kinematic distributions measured by the ATLAS collaboration. T
We calculate the cross section of inclusive dijet photoproduction in ultraperipheral collisions (UPCs) of heavy ions at the CERN Large Hadron Collider using next-to-leading order perturbative QCD and demonstrate that it provides a good description of
We present a first, detailed study of diffractive dijet photoproduction at the recently approved electron-ion collider (EIC) at BNL. Apart from establishing the kinematic reaches for various beam types, energies and kinematic cuts, we make precise pr
We make predictions for the cross sections of diffractive dijet photoproduction in $pp$, $pA$ and $AA$ ultraperipheral collisions (UPCs) at the LHC during Runs 1 and 2 using next-to-leading perturbative QCD. We find that the resulting cross sections
We discuss the prospects of diffractive dijet photoproduction at the EIC to distinguish different fits of diffractive proton PDFs, different schemes of factorization breaking, to determine diffractive nuclear PDFs and pion PDFs from leading neutron production.