ﻻ يوجد ملخص باللغة العربية
[Abridged] Filaments and hubs have received special attention recently thanks to studies showing their role in star formation. While the column density and velocity structures of both filaments and hubs have been studied, their magnetic fields (B-field) are not yet characterized. We aim to understand the role of the B-field in the dynamical evolution of the NGC 6334 hub-filament network. We present new observations of the dust polarized emission at 850$mu$m towards NGC 6334 obtained with the JCMT/POL-2. We study the distribution and dispersion of the polarized intensity ($PI$), the polarization fraction ($PF$), and the B-field angle ($theta_{B}$). We derive the power spectrum of the intensity and $theta_{B}$ along the ridge crest. Our analyses show a complex B-field structure when observed over the whole region ($sim10$ pc), however, at smaller scales ($sim1$ pc), $theta_{B}$ varies coherently along the filaments. The observed power spectrum of $theta_{B}$ can be well represented with a power law function with a slope $-1.33pm0.23$, which is $sim20%$ shallower than that of $I$. This result is compatible with the properties of simulated filaments and may indicate the processes at play in the formation of filaments. $theta_{B}$ rotates from being mostly perpendicular to the filament crests to mostly parallel as they merge with the hubs. This variation of $theta_{B}$ may be tracing local velocity flows of matter in-falling onto the hubs. Our analysis suggests a variation of the energy balance along the crests of these filaments, from magnetically critical/supercritical at their far ends to magnetically subcritical near the hubs. We detect an increase of $PF$ towards the high-column density star cluster-forming hubs that may result from the increase of grain alignment efficiency due to stellar radiation from the newborn stars.
High-mass stars and star clusters commonly form within hub-filament systems. Monoceros R2, harbors one of the closest such systems, making it an excellent target for case studies. We investigate the morphology, stability and dynamical properties of t
The full stellar population of NGC 6334, one of the most spectacular regions of massive star formation in the nearby Galaxy, have not been well-sampled in past studies. We analyze here a mosaic of two Chandra X-ray Observatory images of the region us
We present the 850 $mu$m polarization observations toward the IC5146 filamentary cloud taken using the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) and its associated polarimeter (POL-2), mounted on the James Clerk Maxwell Telescope (JCMT),
Herschel observations of nearby molecular clouds suggest that interstellar filaments and prestellar cores represent two fundamental steps in the star formation process. The observations support a picture of low-mass star formation according to which
Context. The role of magnetic fields during the formation of high-mass stars is not yet fully understood, and the processes related to the early fragmentation and collapse are largely unexplored today. The high-mass star forming region G9.62+0.19 is