ترغب بنشر مسار تعليمي؟ اضغط هنا

IFGAN: Missing Value Imputation using Feature-specific Generative Adversarial Networks

67   0   0.0 ( 0 )
 نشر من قبل Wei Qiu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Missing value imputation is a challenging and well-researched topic in data mining. In this paper, we propose IFGAN, a missing value imputation algorithm based on Feature-specific Generative Adversarial Networks (GAN). Our idea is intuitive yet effective: a feature-specific generator is trained to impute missing values, while a discriminator is expected to distinguish the imputed values from observed ones. The proposed architecture is capable of handling different data types, data distributions, missing mechanisms, and missing rates. It also improves post-imputation analysis by preserving inter-feature correlations. We empirically show on several real-life datasets that IFGAN outperforms current state-of-the-art algorithm under various missing conditions.



قيم البحث

اقرأ أيضاً

Ultra-wideband (UWB) radar systems nowadays typical operate in the low frequency spectrum to achieve penetration capability. However, this spectrum is also shared by many others communication systems, which causes missing information in the frequency bands. To recover this missing spectral information, we propose a generative adversarial network, called SARGAN, that learns the relationship between original and missing band signals by observing these training pairs in a clever way. Initial results shows that this approach is promising in tackling this challenging missing band problem.
In this paper, we present a conditional GAN with two generators and a common discriminator for multiview learning problems where observations have two views, but one of them may be missing for some of the training samples. This is for example the cas e for multilingual collections where documents are not available in all languages. Some studies tackled this problem by assuming the existence of view generation functions to approximately complete the missing views; for example Machine Translation to translate documents into the missing languages. These functions generally require an external resource to be set and their quality has a direct impact on the performance of the learned multiview classifier over the completed training set. Our proposed approach addresses this problem by jointly learning the missing views and the multiview classifier using a tripartite game with two generators and a discriminator. Each of the generators is associated to one of the views and tries to fool the discriminator by generating the other missing view conditionally on the corresponding observed view. The discriminator then tries to identify if for an observation, one of its views is completed by one of the generators or if both views are completed along with its class. Our results on a subset of Reuters RCV1/RCV2 collections show that the discriminator achieves significant classification performance; and that the generators learn the missing views with high quality without the need of any consequent external resource.
Many biological data analysis processes like Cytometry or Next Generation Sequencing (NGS) produce massive amounts of data which needs to be processed in batches for down-stream analysis. Such datasets are prone to technical variations due to differe nce in handling the batches possibly at different times, by different experimenters or under other different conditions. This adds variation to the batches coming from the same source sample. These variations are known as Batch Effects. It is possible that these variations and natural variations due to biology confound but such situations can be avoided by performing experiments in a carefully planned manner. Batch effects can hamper downstream analysis and may also cause results to be inconclusive. Thus, it is essential to correct for these effects. This can be solved using a novel Generative Adversarial Networks (GANs) based framework that is proposed here, advantage of using this framework over other prior approaches is that here it is not required to choose a reproducing kernel and define its parameters. Results of the framework on a mass cytometry dataset are reported.
103 - Zhe Gan , Liqun Chen , Weiyao Wang 2017
A Triangle Generative Adversarial Network ($Delta$-GAN) is developed for semi-supervised cross-domain joint distribution matching, where the training data consists of samples from each domain, and supervision of domain correspondence is provided by o nly a few paired samples. $Delta$-GAN consists of four neural networks, two generators and two discriminators. The generators are designed to learn the two-way conditional distributions between the two domains, while the discriminators implicitly define a ternary discriminative function, which is trained to distinguish real data pairs and two kinds of fake data pairs. The generators and discriminators are trained together using adversarial learning. Under mild assumptions, in theory the joint distributions characterized by the two generators concentrate to the data distribution. In experiments, three different kinds of domain pairs are considered, image-label, image-image and image-attribute pairs. Experiments on semi-supervised image classification, image-to-image translation and attribute-based image generation demonstrate the superiority of the proposed approach.
Time series anomalies can offer information relevant to critical situations facing various fields, from finance and aerospace to the IT, security, and medical domains. However, detecting anomalies in time series data is particularly challenging due t o the vague definition of anomalies and said datas frequent lack of labels and highly complex temporal correlations. Current state-of-the-art unsupervised machine learning methods for anomaly detection suffer from scalability and portability issues, and may have high false positive rates. In this paper, we propose TadGAN, an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs). To capture the temporal correlations of time series distributions, we use LSTM Recurrent Neural Networks as base models for Generators and Critics. TadGAN is trained with cycle consistency loss to allow for effective time-series data reconstruction. We further propose several novel methods to compute reconstruction errors, as well as different approaches to combine reconstruction errors and Critic outputs to compute anomaly scores. To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one. We compare our approach to 8 baseline anomaly detection methods on 11 datasets from multiple reputable sources such as NASA, Yahoo, Numenta, Amazon, and Twitter. The results show that our approach can effectively detect anomalies and outperform baseline methods in most cases (6 out of 11). Notably, our method has the highest averaged F1 score across all the datasets. Our code is open source and is available as a benchmarking tool.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا