ترغب بنشر مسار تعليمي؟ اضغط هنا

BaPipe: Exploration of Balanced Pipeline Parallelism for DNN Training

163   0   0.0 ( 0 )
 نشر من قبل Letian Zhao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The size of deep neural networks (DNNs) grows rapidly as the complexity of the machine learning algorithm increases. To satisfy the requirement of computation and memory of DNN training, distributed deep learning based on model parallelism has been widely recognized. We propose a new pipeline parallelism training framework, BaPipe, which can automatically explore pipeline parallelism training methods and balanced partition strategies for DNN distributed training. In BaPipe, each accelerator calculates the forward propagation and backward propagation of different parts of networks to implement the intra-batch pipeline parallelism strategy. BaPipe uses a new load balancing automatic exploration strategy that considers the parameters of DNN models and the computation, memory, and communication resources of accelerator clusters. We have trained different DNNs such as VGG-16, ResNet-50, and GNMT on GPU clusters and simulated the performance of different FPGA clusters. Compared with state-of-the-art data parallelism and pipeline parallelism frameworks, BaPipe provides up to 3.2x speedup and 4x memory reduction in various platforms.



قيم البحث

اقرأ أيضاً

160 - Zhenkun Cai , Kaihao Ma , Xiao Yan 2020
A good parallelization strategy can significantly improve the efficiency or reduce the cost for the distributed training of deep neural networks (DNNs). Recently, several methods have been proposed to find efficient parallelization strategies but the y all optimize a single objective (e.g., execution time, memory consumption) and produce only one strategy. We propose FT, an efficient algorithm that searches for an optimal set of parallelization strategies to allow the trade-off among different objectives. FT can adapt to different scenarios by minimizing the memory consumption when the number of devices is limited and fully utilize additional resources to reduce the execution time. For popular DNN models (e.g., vision, language), an in-depth analysis is conducted to understand the trade-offs among different objectives and their influence on the parallelization strategies. We also develop a user-friendly system, called TensorOpt, which allows users to run their distributed DNN training jobs without caring the details of parallelization strategies. Experimental results show that FT runs efficiently and provides accurate estimation of runtime costs, and TensorOpt is more flexible in adapting to resource availability compared with existing frameworks.
Many state-of-the-art ML results have been obtained by scaling up the number of parameters in existing models. However, parameters and activations for such large models often do not fit in the memory of a single accelerator device; this means that it is necessary to distribute training of large models over multiple accelerators. In this work, we propose PipeDream-2BW, a system that supports memory-efficient pipeline parallelism. PipeDream-2BW uses a novel pipelining and weight gradient coalescing strategy, combined with the double buffering of weights, to ensure high throughput, low memory footprint, and weight update semantics similar to data parallelism. In addition, PipeDream-2BW automatically partitions the model over the available hardware resources, while respecting hardware constraints such as memory capacities of accelerators and interconnect topologies. PipeDream-2BW can accelerate the training of large GPT and BERT language models by up to 20$times$ with similar final model accuracy.
The recent Natural Language Processing techniques have been refreshing the state-of-the-art performance at an incredible speed. Training huge language models is therefore an imperative demand in both industry and academy. However, huge language model s impose challenges to both hardware and software. Graphical processing units (GPUs) are iterated frequently to meet the exploding demand, and a variety of ASICs like TPUs are spawned. However, there is still a tension between the fast growth of the extremely huge models and the fact that Moores law is approaching the end. To this end, many model parallelism techniques are proposed to distribute the model parameters to multiple devices, so as to alleviate the tension on both memory and computation. Our work is the first to introduce a 3-dimensional model parallelism for expediting huge language models. By reaching a perfect load balance, our approach presents smaller memory and communication cost than existing state-of-the-art 1-D and 2-D model parallelism. Our experiments on 64 TACCs V100 GPUs show that our 3-D parallelism outperforms the 1-D and 2-D parallelism with 2.32x and 1.57x speedup, respectively.
Communication overhead poses an important obstacle to distributed DNN training and draws increasing attention in recent years. Despite continuous efforts, prior solutions such as gradient compression/reduction, compute/communication overlapping and l ayer-wise flow scheduling, etc., are still coarse-grained and insufficient for an efficient distributed training especially when the network is under pressure. We present DLCP, a novel solution exploiting the domain-specific properties of deep learning to optimize communication overhead of DNN training in a fine-grained manner. At its heart, DLCP comprises of several key innovations beyond prior work: e.g., it exploits {em bounded loss tolerance} of SGD-based training to improve tail communication latency which cannot be avoided purely through gradient compression. It then performs fine-grained packet-level prioritization and dropping, as opposed to flow-level scheduling, based on layers and magnitudes of gradients to further speedup model convergence without affecting accuracy. In addition, it leverages inter-packet order-independency to perform per-packet load balancing without causing classical re-ordering issues. DLCP works with both Parameter Server and collective communication routines. We have implemented DLCP with commodity switches, integrated it with various training frameworks including TensorFlow, MXNet and PyTorch, and deployed it in our small-scale testbed with 10 Nvidia V100 GPUs. Our testbed experiments and large-scale simulations show that DLCP delivers up to $84.3%$ additional training acceleration over the best existing solutions.
Model parallelism has become a necessity for training modern large-scale deep language models. In this work, we identify a new and orthogonal dimension from existing model parallel approaches: it is possible to perform pipeline parallelism within a s ingle training sequence for Transformer-based language models thanks to its autoregressive property. This enables a more fine-grained pipeline compared with previous work. With this key idea, we design TeraPipe, a high-performance token-level pipeline parallel algorithm for synchronous model-parallel training of Transformer-based language models. We develop a novel dynamic programming-based algorithm to calculate the optimal pipelining execution scheme given a specific model and cluster configuration. We show that TeraPipe can speed up the training by 5.0x for the largest GPT-3 model with 175 billion parameters on an AWS cluster with 48 p3.16xlarge instances compared with state-of-the-art model-parallel methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا