ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling Nitrogen Fractionation in the Protoplanetary Disk around TW Hya: Model Constraints on Grain Population and Carbon-to-Oxygen Elemental Abundance Ratio

56   0   0.0 ( 0 )
 نشر من قبل Seokho Lee
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations conducted using the Atacama Large Millimeter/submillimeter Array on the protoplanetary disk around TW Hya show the nitrogen fractionation of HCN molecules in HC$^{14}$N/HC$^{15}$N $sim$120 at a radius of $sim$20 AU. In this study, we investigated the physical and chemical conditions that control this nitrogen fractionation process. To this end, a new disk model was developed, in which the isotope-selective photodissociation of N$_2$ and isotope-exchange chemical reactions have been incorporated. Our model can successfully reproduce the observed HCN column density when the elemental abundances of the gas-phase carbon and oxygen are depleted by two orders of magnitude relative to those in the interstellar medium and carbon is more abundant than oxygen ([C/O]$_{rm elem}>$ 1). The isotope-selective photodissociation of N$_2$ is the dominant nitrogen fractionation process in our models. The observed HC$^{14}$N/HC$^{15}$N ratio, which increases outwards, can also be reproduced by the model by assuming that the small dust grains in the atmosphere of the outer disk are depleted more than those in the inner disk. This is consistent with grain evolution models, according to which small dust grains are continuously replenished in the inner disk due to fragmentation of the large dust grains that radially drift from the outer disk.



قيم البحث

اقرأ أيضاً

In this Letter we report the CO abundance relative to H2 derived toward the circumstellar disk of the T-Tauri star TW Hya from the HD (1-0) and C18O (2-1) emission lines. The HD (1-0) line was observed by the Herschel Space Observatory Photodetector Array Camera and Spectrometer whereas C18O (2-1) observations were carried out with the Submillimeter Array at a spatial resolution of 2.8 x 1.9 (corresponding to 142 x 97 AU). In the disks warm molecular layer (T>20 K) we measure a disk-averaged gas-phase CO abundance relative to H2 of $chi{rm(CO)}=(0.1-3)x10^{-5}$, substantially lower than the canonical value of $chi{rm(CO)}=10^{-4}$. We infer that the best explanation of this low $chi$(CO) is the chemical destruction of CO followed by rapid formation of carbon chains, or perhaps CO2, that can subsequently freeze-out, resulting in the bulk mass of carbon locked up in ice grain mantles and oxygen in water. As a consequence of this likely time-dependent carbon sink mechanism, CO may be an unreliable tracer of H2 gas mass.
We report the first detection of a gap and a ring in 336 GHz dust continuum emission from the protoplanetary disk around TW Hya, using the Atacama Large Millimeter/Submillimeter Array (ALMA). The gap and ring are located at around 25 and 41 au from t he central star, respectively, and are associated with the CO snow line at ~30 au. The gap has a radial width of less than 15 au and a mass deficit of more than 23%, taking into account that the observations are limited to an angular resolution of ~15 au. In addition, the 13CO and C18O J = 3 - 2 lines show a decrement in CO line emission throughout the disk, down to ~10 au, indicating a freeze-out of gas-phase CO onto grain surfaces and possible subsequent surface reactions to form larger molecules. The observed gap could be caused by gravitational interaction between the disk gas and a planet with a mass less than super-Neptune (2M_{Neptune}), or could be the result of the destruction of large dust aggregates due to the sintering of CO ice.
For over a decade, the structure of the inner cavity in the transition disk of TW Hydrae has been a subject of debate. Modeling the disk with data obtained at different wavelengths has led to a variety of proposed disk structures. Rather than being i nconsistent, the individual models might point to the different faces of physical processes going on in disks, such as dust growth and planet formation. Our aim is to investigate the structure of the transition disk again and to find to what extent we can reconcile apparent model differences. A large set of high-angular-resolution data was collected from near-infrared to centimeter wavelengths. We investigated the existing disk models and established a new self-consistent radiative-transfer model. A genetic fitting algorithm was used to automatize the parameter fitting. Simple disk models with a vertical inner rim and a radially homogeneous dust composition from small to large grains cannot reproduce the combined data set. Two modifications are applied to this simple disk model: (1) the inner rim is smoothed by exponentially decreasing the surface density in the inner ~3 AU, and (2) the largest grains (>100 um) are concentrated towards the inner disk region. Both properties can be linked to fundamental processes that determine the evolution of protoplanetary disks: the shaping by a possible companion and the different regimes of dust-grain growth, respectively. The full interferometric data set from near-infrared to centimeter wavelengths requires a revision of existing models for the TW Hya disk. We present a new model that incorporates the characteristic structures of previous models but deviates in two key aspects: it does not have a sharp edge at 4 AU, and the surface density of large grains differs from that of smaller grains. This is the first successful radiative-transfer-based model for a full set of interferometric data.
We report the detection of an excess in dust continuum emission at 233~GHz (1.3~mm in wavelength) in the protoplanetary disk around TW~Hya revealed through high-sensitivity observations at $sim$3~au resolution with the Atacama Large Millimeter/submil limeter Array (ALMA). The sensitivity of the 233~GHz image has been improved by a factor of 3 with regard to that of our previous cycle 3 observations. The overall structure is mostly axisymmetric, and there are apparent gaps at 25 and 41 au as previously reported. The most remarkable new finding is a few au-scale excess emission in the south-west part of the protoplanetary disk. The excess emission is located at 52 au from the disk center and is 1.5 times brighter than the surrounding protoplanetary disk at a significance of 12$sigma$. We performed a visibility fitting to the extracted emission after subtracting the axisymmetric protoplanetary disk emission and found that the inferred size and the total flux density of the excess emission are 4.4$times$1.0~au and 250~$mu$Jy, respectively. The dust mass of the excess emission corresponds to 0.03~$M_oplus$ if a dust temperature of 18~K is assumed. Since the excess emission can also be marginally identified in the Band 7 image at almost the same position, the feature is unlikely to be a background source. The excess emission can be explained by a dust clump accumulated in a small elongated vortex or a massive circumplanetary disk around a Neptune mass forming-planet.
H2CO is one of the most readily detected organic molecules in protoplanetary disks. Yet its distribution and dominant formation pathway(s) remain largely unconstrained. To address these issues, we present ALMA observations of two H2CO lines (3_{12}-2 _{11} and 5_{15}-4_{14}) at 0.5 (~30 au) spatial resolution toward the disk around the nearby T Tauri star TW Hya. Emission from both lines is spatially resolved, showing a central depression, a peak at 0.4 radius, and a radial decline at larger radii with a bump at ~1, near the millimeter continuum edge. We adopt a physical model for the disk and use toy models to explore the radial and vertical H2CO abundance structure. We find that the observed emission implies the presence of at least two distinct H2CO gas reservoirs: (1) a warm and unresolved inner component (<10 au), and (2) an outer component that extends from ~15 au to beyond the millimeter continuum edge. The outer component is further constrained by the line ratio to arise in a more elevated disk layer at larger radii. The inferred H2CO abundance structure agrees well with disk chemistry models, which predict efficient H2CO gas-phase formation close to the star, and cold H2CO grain surface formation, through H additions to condensed CO, followed by non-thermal desorption in the outer disk. The implied presence of active grain surface chemistry in the TW Hya disk is consistent with the recent detection of CH3OH emission, and suggests that more complex organic molecules are formed in disks, as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا