ﻻ يوجد ملخص باللغة العربية
In human learning, an effective learning methodology is small-group learning: a small group of students work together towards the same learning objective, where they express their understanding of a topic to their peers, compare their ideas, and help each other to trouble-shoot problems. In this paper, we aim to investigate whether this human learning method can be borrowed to train better machine learning models, by developing a novel ML framework -- small-group learning (SGL). In our framework, a group of learners (ML models) with different model architectures collaboratively help each other to learn by leveraging their complementary advantages. Specifically, each learner uses its intermediately trained model to generate a pseudo-labeled dataset and re-trains its model using pseudo-labeled datasets generated by other learners. SGL is formulated as a multi-level optimization framework consisting of three learning stages: each learner trains a model independently and uses this model to perform pseudo-labeling; each learner trains another model using datasets pseudo-labeled by other learners; learners improve their architectures by minimizing validation losses. An efficient algorithm is developed to solve the multi-level optimization problem. We apply SGL for neural architecture search. Results on CIFAR-100, CIFAR-10, and ImageNet demonstrate the effectiveness of our method.
Learning through tests is a broadly used methodology in human learning and shows great effectiveness in improving learning outcome: a sequence of tests are made with increasing levels of difficulty; the learner takes these tests to identify his/her w
Neural architecture search (NAS) with an accuracy predictor that predicts the accuracy of candidate architectures has drawn increasing attention due to its simplicity and effectiveness. Previous works usually employ neural network-based predictors wh
Graph neural networks (GNNs) have been successfully applied to learning representation on graphs in many relational tasks. Recently, researchers study neural architecture search (NAS) to reduce the dependence of human expertise and explore better GNN
Most existing neural architecture search (NAS) algorithms are dedicated to the downstream tasks, e.g., image classification in computer vision. However, extensive experiments have shown that, prominent neural architectures, such as ResNet in computer
We introduce RL-DARTS, one of the first applications of Differentiable Architecture Search (DARTS) in reinforcement learning (RL) to search for convolutional cells, applied to the Procgen benchmark. We outline the initial difficulties of applying neu