ﻻ يوجد ملخص باللغة العربية
We introduce a spinful variant of the Sachdev-Ye-Kitaev model with an effective time reversal symmetry, which can be solved exactly in the limit of a large number $N$ of degrees of freedom. At low temperature, its phase diagram includes a compressible non-Fermi liquid and a strongly-correlated spin singlet superconductor that shows a tunable enhancement of the gap ratio predicted by BCS theory. These two phases are separated by a first-order transition, in the vicinity of which a gapless superconducting phase, characterized by a non-zero magnetization, is stabilized upon applying a Zeeman field. We study equilibrium transport properties of such superconductors using a lattice construction, and propose a physical platform based on topological insulator flakes where they may arise from repulsive electronic interactions.
We study the original Sachdev-Ye (SY) model in its Majorana fermion representation which can be called the two indices Sachdev-Ye-Kitaev (SYK) model. Its advantage over the original SY model in the $ SU(M) $ complex fermion representation is that it
Supersymmetry is a powerful concept in quantum many-body physics. It helps to illuminate ground state properties of complex quantum systems and gives relations between correlation functions. In this work, we show that the Sachdev-Ye-Kitaev model, in
Periodically driven quantum matter can realize exotic dynamical phases. In order to understand how ubiquitous and robust these phases are, it is pertinent to investigate the heating dynamics of generic interacting quantum systems. Here we study the t
In this work we investigate whether the Kitaev honeycomb model can serve as a starting point to realize the intriguing physics of the Sachdev-Ye-Kitaev model. The starting point is to strain the system which leads to flat bands reminiscent of Landau
We compute the transport and chaos properties of lattices of quantum Sachdev-Ye-Kitaev islands coupled by single fermion hopping, and with the islands coupled to a large number of local, low energy phonons. We find two distinct regimes of linear-in-t