ﻻ يوجد ملخص باللغة العربية
We introduce the Incremental Implicitly-Refined Classi-fication (IIRC) setup, an extension to the class incremental learning setup where the incoming batches of classes have two granularity levels. i.e., each sample could have a high-level (coarse) label like bear and a low-level (fine) label like polar bear. Only one label is provided at a time, and the model has to figure out the other label if it has already learnfed it. This setup is more aligned with real-life scenarios, where a learner usually interacts with the same family of entities multiple times, discovers more granularity about them, while still trying not to forget previous knowledge. Moreover, this setup enables evaluating models for some important lifelong learning challenges that cannot be easily addressed under the existing setups. These challenges can be motivated by the example if a model was trained on the class bear in one task and on polar bear in another task, will it forget the concept of bear, will it rightfully infer that a polar bear is still a bear? and will it wrongfully associate the label of polar bear to other breeds of bear?. We develop a standardized benchmark that enables evaluating models on the IIRC setup. We evaluate several state-of-the-art lifelong learning algorithms and highlight their strengths and limitations. For example, distillation-based methods perform relatively well but are prone to incorrectly predicting too many labels per image. We hope that the proposed setup, along with the benchmark, would provide a meaningful problem setting to the practitioners
Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points, without forgetting knowledge of old classes. The difficulty lies in that limited data from new clas
With the rapid development of social media, tremendous videos with new classes are generated daily, which raise an urgent demand for video classification methods that can continuously update new classes while maintaining the knowledge of old videos w
Network pruning is widely used to compress Deep Neural Networks (DNNs). The Soft Filter Pruning (SFP) method zeroizes the pruned filters during training while updating them in the next training epoch. Thus the trained information of the pruned filter
Although well-trained deep neural networks have shown remarkable performance on numerous tasks, they rapidly forget what they have learned as soon as they begin to learn with additional data with the previous data stop being provided. In this paper,
The goal of this paper is to analyze the geometric properties of deep neural network classifiers in the input space. We specifically study the topology of classification regions created by deep networks, as well as their associated decision boundary.