ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-supervised self-supervision by combining deep learning and probabilistic logic

93   0   0.0 ( 0 )
 نشر من قبل Hunter Lang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Labeling training examples at scale is a perennial challenge in machine learning. Self-supervision methods compensate for the lack of direct supervision by leveraging prior knowledge to automatically generate noisy labeled examples. Deep probabilistic logic (DPL) is a unifying framework for self-supervised learning that represents unknown labels as latent variables and incorporates diverse self-supervision using probabilistic logic to train a deep neural network end-to-end using variational EM. While DPL is successful at combining pre-specified self-supervision, manually crafting self-supervision to attain high accuracy may still be tedious and challenging. In this paper, we propose Self-Supervised Self-Supervision (S4), which adds to DPL the capability to learn new self-supervision automatically. Starting from an initial seed, S4 iteratively uses the deep neural network to propose new self supervision. These are either added directly (a form of structured self-training) or verified by a human expert (as in feature-based active learning). Experiments show that S4 is able to automatically propose accurate self-supervision and can often nearly match the accuracy of supervised methods with a tiny fraction of the human effort.



قيم البحث

اقرأ أيضاً

Deep learning has proven effective for various application tasks, but its applicability is limited by the reliance on annotated examples. Self-supervised learning has emerged as a promising direction to alleviate the supervision bottleneck, but exist ing work focuses on leveraging co-occurrences in unlabeled data for task-agnostic representation learning, as exemplified by masked language model pretraining. In this chapter, we explore task-specific self-supervision, which leverages domain knowledge to automatically annotate noisy training examples for end applications, either by introducing labeling functions for annotating individual instances, or by imposing constraints over interdependent label decisions. We first present deep probabilistic logic(DPL), which offers a unifying framework for task-specific self-supervision by composing probabilistic logic with deep learning. DPL represents unknown labels as latent variables and incorporates diverse self-supervision using probabilistic logic to train a deep neural network end-to-end using variational EM. Next, we present self-supervised self-supervision(S4), which adds to DPL the capability to learn new self-supervision automatically. Starting from an initial seed self-supervision, S4 iteratively uses the deep neural network to propose new self supervision. These are either added directly (a form of structured self-training) or verified by a human expert (as in feature-based active learning). Experiments on real-world applications such as biomedical machine reading and various text classification tasks show that task-specific self-supervision can effectively leverage domain expertise and often match the accuracy of supervised methods with a tiny fraction of human effort.
422 - Wei Jin , Tyler Derr , Haochen Liu 2020
The success of deep learning notoriously requires larger amounts of costly annotated data. This has led to the development of self-supervised learning (SSL) that aims to alleviate this limitation by creating domain specific pretext tasks on unlabeled data. Simultaneously, there are increasing interests in generalizing deep learning to the graph domain in the form of graph neural networks (GNNs). GNNs can naturally utilize unlabeled nodes through the simple neighborhood aggregation that is unable to thoroughly make use of unlabeled nodes. Thus, we seek to harness SSL for GNNs to fully exploit the unlabeled data. Different from data instances in the image and text domains, nodes in graphs present unique structure information and they are inherently linked indicating not independent and identically distributed (or i.i.d.). Such complexity is a double-edged sword for SSL on graphs. On the one hand, it determines that it is challenging to adopt solutions from the image and text domains to graphs and dedicated efforts are desired. On the other hand, it provides rich information that enables us to build SSL from a variety of perspectives. Thus, in this paper, we first deepen our understandings on when, why, and which strategies of SSL work with GNNs by empirically studying numerous basic SSL pretext tasks on graphs. Inspired by deep insights from the empirical studies, we propose a new direction SelfTask to build advanced pretext tasks that are able to achieve state-of-the-art performance on various real-world datasets. The specific experimental settings to reproduce our results can be found in url{https://github.com/ChandlerBang/SelfTask-GNN}.
Generating interpretable visualizations from complex data is a common problem in many applications. Two key ingredients for tackling this issue are clustering and representation learning. However, current methods do not yet successfully combine the s trengths of these two approaches. Existing representation learning models which rely on latent topological structure such as self-organising maps, exhibit markedly lower clustering performance compared to recent deep clustering methods. To close this performance gap, we (a) present a novel way to fit self-organizing maps with probabilistic cluster assignments (PSOM), (b) propose a new deep architecture for probabilistic clustering (DPSOM) using a VAE, and (c) extend our architecture for time-series clustering (T-DPSOM), which also allows forecasting in the latent space using LSTMs. We show that DPSOM achieves superior clustering performance compared to current deep clustering methods on MNIST/Fashion-MNIST, while maintaining the favourable visualization properties of SOMs. On medical time series, we show that T-DPSOM outperforms baseline methods in time series clustering and time series forecasting, while providing interpretable visualizations of patient state trajectories and uncertainty estimation.
In self-supervised learning, a system is tasked with achieving a surrogate objective by defining alternative targets on a set of unlabeled data. The aim is to build useful representations that can be used in downstream tasks, without costly manual an notation. In this work, we propose a novel self-supervised formulation of relational reasoning that allows a learner to bootstrap a signal from information implicit in unlabeled data. Training a relation head to discriminate how entities relate to themselves (intra-reasoning) and other entities (inter-reasoning), results in rich and descriptive representations in the underlying neural network backbone, which can be used in downstream tasks such as classification and image retrieval. We evaluate the proposed method following a rigorous experimental procedure, using standard datasets, protocols, and backbones. Self-supervised relational reasoning outperforms the best competitor in all conditions by an average 14% in accuracy, and the most recent state-of-the-art model by 3%. We link the effectiveness of the method to the maximization of a Bernoulli log-likelihood, which can be considered as a proxy for maximizing the mutual information, resulting in a more efficient objective with respect to the commonly used contrastive losses.
114 - Jiaqi Zeng , Pengtao Xie 2020
Graph classification is a widely studied problem and has broad applications. In many real-world problems, the number of labeled graphs available for training classification models is limited, which renders these models prone to overfitting. To addres s this problem, we propose two approaches based on contrastive self-supervised learning (CSSL) to alleviate overfitting. In the first approach, we use CSSL to pretrain graph encoders on widely-available unlabeled graphs without relying on human-provided labels, then finetune the pretrained encoders on labeled graphs. In the second approach, we develop a regularizer based on CSSL, and solve the supervised classification task and the unsupervised CSSL task simultaneously. To perform CSSL on graphs, given a collection of original graphs, we perform data augmentation to create augmented graphs out of the original graphs. An augmented graph is created by consecutively applying a sequence of graph alteration operations. A contrastive loss is defined to learn graph encoders by judging whether two augmented graphs are from the same original graph. Experiments on various graph classification datasets demonstrate the effectiveness of our proposed methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا