ﻻ يوجد ملخص باللغة العربية
The notion of age-of-information (AoI) is investigated in the context of large-scale wireless networks, in which transmitters need to send a sequence of information packets, which are generated as independent Bernoulli processes, to their intended receivers over a shared spectrum. Due to interference, the rate of packet depletion at any given node is entangled with both the spatial configurations, which determine the path loss, and temporal dynamics, which influence the active states, of the other transmitters, resulting in the queues to interact with each other in both space and time over the entire network. To that end, variants in the packet update frequency affect not just the inter-arrival time but also the departure process, and the impact of such phenomena on the AoI is not well understood. In this paper, we establish a theoretical framework to characterize the AoI performance in the aforementioned setting. Particularly, tractable expressions are derived for both the peak and average AoI under two different transmission protocols, namely the FCFS and the LCFS-PR. Based on the theoretical outcomes, we find that: i) networks operating under LCFS-PR are able to attain smaller values of peak and average AoI than that under FCFS, whereas the gain is more pronounced when the infrastructure is densely deployed, ii) in sparsely deployed networks, ALOHA with a universally designed channel access probability is not instrumental in reducing the AoI, thus calling for more advanced channel access approaches, and iii) when the infrastructure is densely rolled out, there exists a non-trivial ALOHA channel access probability that minimizes the peak and average AoI under both FCFS and LCFS-PR.
Given $n$ randomly located source-destination (S-D) pairs on a fixed area network that want to communicate with each other, we study the age of information with a particular focus on its scaling as the network size $n$ grows. We propose a three-phase
While age of Information (AoI) has gained importance as a metric characterizing the fresh-ness of information in information-update systems and time-critical applications, most previous studies on AoI have been theoretical. In this chapter, we compil
We consider the age of information in a multihop multicast network where there is a single source node sending time-sensitive updates to $n^L$ end nodes, and $L$ denotes the number of hops. In the first hop, the source node sends updates to $n$ first
This paper summarizes recent contributions of the authors and their co-workers in the area of information-theoretic security.
Timeliness is an emerging requirement for many Internet of Things (IoT) applications. In IoT networks, where a large-number of nodes are distributed, severe interference may incur during the transmission phase which causes age of information (AoI) de