ترغب بنشر مسار تعليمي؟ اضغط هنا

Pit30M: A Benchmark for Global Localization in the Age of Self-Driving Cars

167   0   0.0 ( 0 )
 نشر من قبل Julieta Martinez
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We are interested in understanding whether retrieval-based localization approaches are good enough in the context of self-driving vehicles. Towards this goal, we introduce Pit30M, a new image and LiDAR dataset with over 30 million frames, which is 10 to 100 times larger than those used in previous work. Pit30M is captured under diverse conditions (i.e., season, weather, time of the day, traffic), and provides accurate localization ground truth. We also automatically annotate our dataset with historical weather and astronomical data, as well as with image and LiDAR semantic segmentation as a proxy measure for occlusion. We benchmark multiple existing methods for image and LiDAR retrieval and, in the process, introduce a simple, yet effective convolutional network-based LiDAR retrieval method that is competitive with the state of the art. Our work provides, for the first time, a benchmark for sub-metre retrieval-based localization at city scale. The dataset, additional experimental results, as well as more information about the sensors, calibration, and metadata, are available on the project website: https://uber.com/atg/datasets/pit30m



قيم البحث

اقرأ أيضاً

49 - Ziyi Liu , Siyu Yu , Xiao Wang 2017
It has been well recognized that detecting drivable area is central to self-driving cars. Most of existing methods attempt to locate road surface by using lane line, thereby restricting to drivable area on which have a clear lane mark. This paper pro poses an unsupervised approach for detecting drivable area utilizing both image data from a monocular camera and point cloud data from a 3D-LIDAR scanner. Our approach locates initial drivable areas based on a direction ray map obtained by image-LIDAR data fusion. Besides, a fusion of the feature level is also applied for more robust performance. Once the initial drivable areas are described by different features, the feature fusion problem is formulated as a Markov network and a belief propagation algorithm is developed to perform the model inference. Our approach is unsupervised and avoids common hypothesis, yet gets state-of-the-art results on ROAD-KITTI benchmark. Experiments show that our unsupervised approach is efficient and robust for detecting drivable area for self-driving cars.
Road-boundary detection is important for autonomous driving. It can be used to constrain autonomous vehicles running on road areas to ensure driving safety. Compared with online road-boundary detection using on-vehicle cameras/Lidars, offline detecti on using aerial images could alleviate the severe occlusion issue. Moreover, the offline detection results can be directly employed to annotate high-definition (HD) maps. In recent years, deep-learning technologies have been used in offline detection. But there still lacks a publicly available dataset for this task, which hinders the research progress in this area. So in this paper, we propose a new benchmark dataset, named textit{Topo-boundary}, for offline topological road-boundary detection. The dataset contains 25,295 $1000times1000$-sized 4-channel aerial images. Each image is provided with 8 training labels for different sub-tasks. We also design a new entropy-based metric for connectivity evaluation, which could better handle noises or outliers. We implement and evaluate 3 segmentation-based baselines and 5 graph-based baselines using the dataset. We also propose a new imitation-learning-based baseline which is enhanced from our previous work. The superiority of our enhancement is demonstrated from the comparison. The dataset and our-implemented code for the baselines are available at texttt{url{https://tonyxuqaq.github.io/Topo-boundary/}}.
Current driver assistance systems and autonomous driving stacks are limited to well-defined environment conditions and geo fenced areas. To increase driving safety in adverse weather conditions, broadening the application spectrum of autonomous drivi ng and driver assistance systems is necessary. In order to enable this development, reproducible benchmarking methods are required to quantify the expected distortions. In this publication, a testing methodology for disturbances from spray is presented. It introduces a novel lightweight and configurable spray setup alongside an evaluation scheme to assess the disturbances caused by spray. The analysis covers an automotive RGB camera and two different LiDAR systems, as well as downstream detection algorithms based on YOLOv3 and PV-RCNN. In a common scenario of a closely cutting vehicle, it is visible that the distortions are severely affecting the perception stack up to four seconds showing the necessity of benchmarking the influences of spray.
We present a vehicle self-localization method using point-based deep neural networks. Our approach processes measurements and point features, i.e. landmarks, from a high-definition digital map to infer the vehicles pose. To learn the best association and incorporate local information between the point sets, we propose an attention mechanism that matches the measurements to the corresponding landmarks. Finally, we use this representation for the point-cloud registration and the subsequent pose regression task. Furthermore, we introduce a training simulation framework that artificially generates measurements and landmarks to facilitate the deployment process and reduce the cost of creating extensive datasets from real-world data. We evaluate our method on our dataset, as well as an adapted version of the Kitti odometry dataset, where we achieve superior performance compared to related approaches; and additionally show dominant generalization capabilities.
This research addresses the challenging problem of visual collision detection in very complex and dynamic real physical scenes, specifically, the vehicle driving scenarios. This research takes inspiration from a large-field looming sensitive neuron, i.e., the lobula giant movement detector (LGMD) in the locusts visual pathways, which represents high spike frequency to rapid approaching objects. Building upon our previous models, in this paper we propose a novel inhibition mechanism that is capable of adapting to different levels of background complexity. This adaptive mechanism works effectively to mediate the local inhibition strength and tune the temporal latency of local excitation reaching the LGMD neuron. As a result, the proposed model is effective to extract colliding cues from complex dynamic visual scenes. We tested the proposed method using a range of stimuli including simulated movements in grating backgrounds and shifting of a natural panoramic scene, as well as vehicle crash video sequences. The experimental results demonstrate the proposed method is feasible for fast collision perception in real-world situations with potential applications in future autonomous vehicles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا