ﻻ يوجد ملخص باللغة العربية
It is well known that the Klein-Gordon equation in curved spacetime is conformally noninvariant, both with and without a mass term. We show that such a noninvariance provides nontrivial physical insights at different levels, first within the fully relativistic regime, then at the nonrelativistic regime leading to the Schrodinger equation, and then within the de Broglie-Bohm causal interpretation of quantum mechanics. The conformal noninvariance of the Klein-Gordon equation coupled to a vector potential is confronted with the conformal invariance of Maxwells equations in the presence of a charged current. The conformal invariance of the non-minimally coupled Klein-Gordon equation to gravity is then examined in light of the conformal invariance of Maxwells equations. Finally, the consequence of the noninvariance of the equation on the Aharonov-Bohm effect in curved spacetime is discussed. The issues that arise at each of these different levels are thoroughly analyzed.
We compare the nature of electromagnetic fields and of gravitational fields in linearized general relativity. We carry out this comparison both mathematically and visually. In particular the lines of force visualizations of electromagnetism are contr
We investigate the effects of multi-task learning using the recently introduced task of semantic tagging. We employ semantic tagging as an auxiliary task for three different NLP tasks: part-of-speech tagging, Universal Dependency parsing, and Natural
Learning problems form an important category of computational tasks that generalizes many of the computations researchers apply to large real-life data sets. We ask: what concept classes can be learned privately, namely, by an algorithm whose output
In this paper we show that the Schrodinger-Newton equation for spherically symmetric gravitational fields can be derived in a WKB-like expansion in 1/c from the Einstein-Klein-Gordon and Einstein-Dirac system.
We discuss the features of instabilities in binary systems, in particular, for asymmetric nuclear matter. We show its relevance for the interpretation of results obtained in experiments and in ab initio simulations of the reaction between $^{124}Sn+^{124}Sn$ at 50AMeV.}