ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Sample and Feature Selection with Principal Covariates Regression

125   0   0.0 ( 0 )
 نشر من قبل Michele Ceriotti
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Selecting the most relevant features and samples out of a large set of candidates is a task that occurs very often in the context of automated data analysis, where it can be used to improve the computational performance, and also often the transferability, of a model. Here we focus on two popular sub-selection schemes which have been applied to this end: CUR decomposition, that is based on a low-rank approximation of the feature matrix and Farthest Point Sampling, that relies on the iterative identification of the most diverse samples and discriminating features. We modify these unsupervised approaches, incorporating a supervised component following the same spirit as the Principal Covariates Regression (PCovR) method. We show that incorporating target information provides selections that perform better in supervised tasks, which we demonstrate with ridge regression, kernel ridge regression, and sparse kernel regression. We also show that incorporating aspects of simple supervised learning models can improve the accuracy of more complex models, such as feed-forward neural networks. We present adjustments to minimize the impact that any subselection may incur when performing unsupervised tasks. We demonstrate the significant improvements associated with the use of PCov-CUR and PCov-FPS selections for applications to chemistry and materials science, typically reducing by a factor of two the number of features and samples which are required to achieve a given level of regression accuracy.



قيم البحث

اقرأ أيضاً

Data analyses based on linear methods constitute the simplest, most robust, and transparent approaches to the automatic processing of large amounts of data for building supervised or unsupervised machine learning models. Principal covariates regressi on (PCovR) is an underappreciated method that interpolates between principal component analysis and linear regression, and can be used to conveniently reveal structure-property relations in terms of simple-to-interpret, low-dimensional maps. Here we provide a pedagogic overview of these data analysis schemes, including the use of the kernel trick to introduce an element of non-linearity, while maintaining most of the convenience and the simplicity of linear approaches. We then introduce a kernelized version of PCovR and a sparsified extension, and demonstrate the performance of this approach in revealing and predicting structure-property relations in chemistry and materials science, showing a variety of examples including elemental carbon, porous silicate frameworks, organic molecules, amino acid conformers, and molecular materials.
In this paper, we study the application of sparse principal component analysis (PCA) to clustering and feature selection problems. Sparse PCA seeks sparse factors, or linear combinations of the data variables, explaining a maximum amount of variance in the data while having only a limited number of nonzero coefficients. PCA is often used as a simple clustering technique and sparse factors allow us here to interpret the clusters in terms of a reduced set of variables. We begin with a brief introduction and motivation on sparse PCA and detail our implementation of the algorithm in dAspremont et al. (2005). We then apply these results to some classic clustering and feature selection problems arising in biology.
The aim of this paper is to present a mixture composite regression model for claim severity modelling. Claim severity modelling poses several challenges such as multimodality, heavy-tailedness and systematic effects in data. We tackle this modelling problem by studying a mixture composite regression model for simultaneous modeling of attritional and large claims, and for considering systematic effects in both the mixture components as well as the mixing probabilities. For model fitting, we present a group-fused regularization approach that allows us for selecting the explanatory variables which significantly impact the mixing probabilities and the different mixture components, respectively. We develop an asymptotic theory for this regularized estimation approach, and fitting is performed using a novel Generalized Expectation-Maximization algorithm. We exemplify our approach on real motor insurance data set.
406 - Jingfei Zhang , Yi Li 2020
Though Gaussian graphical models have been widely used in many scientific fields, limited progress has been made to link graph structures to external covariates because of substantial challenges in theory and computation. We propose a Gaussian graphi cal regression model, which regresses both the mean and the precision matrix of a Gaussian graphical model on covariates. In the context of co-expression quantitative trait locus (QTL) studies, our framework facilitates estimation of both population- and subject-level gene regulatory networks, and detection of how subject-level networks vary with genetic variants and clinical conditions. Our framework accommodates high dimensional responses and covariates, and encourages covariate effects on both the mean and the precision matrix to be sparse. In particular for the precision matrix, we stipulate simultaneous sparsity, i.e., group sparsity and element-wise sparsity, on effective covariates and their effects on network edges, respectively. We establish variable selection consistency first under the case with known mean parameters and then a more challenging case with unknown means depending on external covariates, and show in both cases that the convergence rate of the estimated precision parameters is faster than that obtained by lasso or group lasso, a desirable property for the sparse group lasso estimation. The utility and efficacy of our proposed method is demonstrated through simulation studies and an application to a co-expression QTL study with brain cancer patients.
Online feature selection has been an active research area in recent years. We propose a novel diverse online feature selection method based on Determinantal Point Processes (DPP). Our model aims to provide diverse features which can be composed in ei ther a supervised or unsupervised framework. The framework aims to promote diversity based on the kernel produced on a feature level, through at most three stages: feature sampling, local criteria and global criteria for feature selection. In the feature sampling, we sample incoming stream of features using conditional DPP. The local criteria is used to assess and select streamed features (i.e. only when they arrive), we use unsupervised scale invariant methods to remove redundant features and optionally supervised methods to introduce label information to assess relevant features. Lastly, the global criteria uses regularization methods to select a global optimal subset of features. This three stage procedure continues until there are no more features arriving or some predefined stopping condition is met. We demonstrate based on experiments conducted on that this approach yields better compactness, is comparable and in some instances outperforms other state-of-the-art online feature selection methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا