ﻻ يوجد ملخص باللغة العربية
Hot Jupiters provide valuable natural laboratories for studying potential contributions of high-energy radiation to prebiotic synthesis in the atmospheres of exoplanets. In this fourth paper of the MOVES (Multiwavelength Observations of an eVaporating Exoplanet and its Star) programme, we study the effect of different types of high-energy radiation on the production of organic and prebiotic molecules in the atmosphere of the hot Jupiter HD 189733b. Our model combines X-ray and UV observations from the MOVES programme and 3D climate simulations from the 3D Met Office Unified Model to simulate the atmospheric composition and kinetic chemistry with the STAND2019 network. Also, the effects of galactic cosmic rays and stellar energetic particles are included. We find that the differences in the radiation field between the irradiated dayside and the shadowed nightside lead to stronger changes in the chemical abundances than the variability of the host stars XUV emission. We identify ammonium (NH4+) and oxonium (H3O+) as fingerprint ions for the ionization of the atmosphere by both galactic cosmic rays and stellar particles. All considered types of high-energy radiation have an enhancing effect on the abundance of key organic molecules such as hydrogen cyanide (HCN), formaldehyde (CH2O), and ethylene (C2H4). The latter two are intermediates in the production pathway of the amino acid glycine (C2H5NO2) and abundant enough to be potentially detectable by JWST.
In this third paper of the MOVES (Multiwavelength Observations of an eVaporating Exoplanet and its Star) programme, we combine Hubble Space Telescope far-ultraviolet observations with XMM-Newton/Swift X-ray observations to measure the emission of HD
Using the POLISH instrument, I am unable to reproduce the large-amplitude polarimetric observations of Berdyugina et al. (2008) to the >99.99% confidence level. I observe no significant polarimetric variability in the HD 189733 system, and the upper
We present here new transmission spectra of the hot Jupiter HD-189733b using the SpeX instrument on the NASA Infrared Telescope Facility. We obtained two nights of observations where we recorded the primary transit of the planet in the J-, H- and K-b
Bow shocks are ubiquitous astrophysical phenomena resulting from the supersonic passage of an object through a gas. Recently, pre-transit absorption in UV metal transitions of the hot Jupiter exoplanets HD 189733b and WASP12-b have been interpreted a
We present high-precision linear polarization observations of four bright hot Jupiter systems ($tau$ Boo, HD 179949, HD 189733 and 51 Peg) and use the data to search for polarized reflected light from the planets. The data for 51 Peg are consistent w