ﻻ يوجد ملخص باللغة العربية
As a generic modeling tool, Convolutional Neural Networks (CNNs) have been widely employed in image generation and translation tasks. However, when fed with a flat input, current CNN models may fail to generate vivid results due to the spatially shared convolution kernels. We call it the flatness degradation of CNNs. Unfortunately, such degradation is the greatest obstacles to generate a spatially-variant output from a flat input, which has been barely discussed in the previous literature. To tackle this problem, we propose a model agnostic solution, i.e. Noise Incentive Block (NIB), which serves as a generic plug-in for any CNN generation model. The key idea is to break the flat input condition while keeping the intactness of the original information. Specifically, the NIB perturbs the input data symmetrically with a noise map and reassembles them in the feature domain as driven by the objective function. Extensive experiments show that existing CNN models equipped with NIB survive from the flatness degradation and are able to generate visually better results with richer details in some specific image generation tasks given flat inputs, e.g. semantic image synthesis, data-hidden image generation, and deep neural dithering.
Convolutional neural networks trained without supervision come close to matching performance with supervised pre-training, but sometimes at the cost of an even higher number of parameters. Extracting subnetworks from these large unsupervised convnets
We propose contextual convolution (CoConv) for visual recognition. CoConv is a direct replacement of the standard convolution, which is the core component of convolutional neural networks. CoConv is implicitly equipped with the capability of incorpor
Convolutional Neural Networks (CNNs) have been proven to be extremely successful at solving computer vision tasks. State-of-the-art methods favor such deep network architectures for its accuracy performance, with the cost of having massive number of
Classical convolutional neural networks (cCNNs) are very good at categorizing objects in images. But, unlike human vision which is relatively robust to noise in images, the performance of cCNNs declines quickly as image quality worsens. Here we propo
Although convolutional neural networks (CNNs) are now widely used in various computer vision applications, its huge resource demanding on parameter storage and computation makes the deployment on mobile and embedded devices difficult. Recently, binar