ترغب بنشر مسار تعليمي؟ اضغط هنا

TASI 2020 Lectures on Precision Tests of the Standard Model

120   0   0.0 ( 0 )
 نشر من قبل Ayres Freitas
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Ayres Freitas




اسأل ChatGPT حول البحث

This write-up of lectures given at TASI 2020 provides an introduction into precision tests of the electroweak Standard Model. The lecture notes begin with a hands-on review of the (on-shell) renormalization procedure, and subsequently highlight a few subtleties that occur in the renormalization of a theory with electroweak symmetry breaking and massive gauge bosons. After that a set of typical electroweak precision observables is introduced, as well as a range of input parameter measurements that are needed for making predictions within the Standard Model. Finally, it is discussed how comparisons of the electroweak precision observables between experiment and theory can be used to stress-test the Standard Model and probe new physics.



قيم البحث

اقرأ أيضاً

114 - Tony Gherghetta 2010
We provide an introduction to the physics of a warped extra dimension and the AdS/CFT correspondence. An AdS/CFT dictionary is given which leads to a 4D holographic view of the 5th dimension. With a particular emphasis on beyond the standard model ph ysics, this provides a window into the strong dynamics associated with either electroweak symmetry breaking or supersymmetry breaking. In this way hierarchies associated with either the electroweak or supersymmetry breaking scale, together with the fermion mass spectrum, can be addressed in a consistent framework.
119 - Daniel Baumann 2018
These lectures cover aspects of primordial cosmology with a focus on observational tests of physics beyond the Standard Model. The presentation is divided into two parts: In Part I, we study the production of new light particles in the hot big bang a nd describe their effects on the anisotropies of the cosmic microwave background. In Part II, we investigate the possibility of very massive particles being created during inflation and determine their imprints in higher-order cosmological correlations.
I introduce the consequences of neutrino mass and mixing in the dense environments of the early Universe and in astrophysical environments. Thermal and matter effects are reviewed in the context of a two-neutrino formalism, with methods of extension to multiple neutrinos. The observed large neutrino mixing angles place the strongest constraint on cosmological lepton (or neutrino) asymmetries, while new sterile neutrinos provide a wealth of possible new physics, including lepton asymmetry generation as well as candidates for dark matter. I also review cosmic microwave background and large-scale structure constraints on neutrino mass and energy density. Lastly, I review how X-ray astronomy has become a branch of neutrino physics in searches for keV-scale sterile neutrino dark matter radiative decay.
55 - Frederic Teubert 1998
The measurements performed at LEP and SLC have substantially improved the precision of the test of the Minimal Standard Model. The precision is such that there is sensitivity to pure weak radiative corrections. This allows to indirectly determine the top mass (mt=161$pm$8 GeV), the W-boson mass (MW=80.37$pm$0.03 GeV), and to set an upper limit on the the Higgs boson mass of 262 GeV at 95% confidence level.
168 - Laura Reina 2012
In these lectures I briefly review the Higgs mechanism of electroweak symmetry breaking and focus on the most relevant aspects of the phenomenology of the Standard Model Higgs boson at hadron colliders, namely the Tevatron and the Large Hadron Collid er. Emphasis is put in particular on the Higgs-physics program of both LHC experiments and on the theoretical activity that has entailed from the the need of providing accurate predictions for both signal and background in Higgs-boson searches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا