ﻻ يوجد ملخص باللغة العربية
This write-up of lectures given at TASI 2020 provides an introduction into precision tests of the electroweak Standard Model. The lecture notes begin with a hands-on review of the (on-shell) renormalization procedure, and subsequently highlight a few subtleties that occur in the renormalization of a theory with electroweak symmetry breaking and massive gauge bosons. After that a set of typical electroweak precision observables is introduced, as well as a range of input parameter measurements that are needed for making predictions within the Standard Model. Finally, it is discussed how comparisons of the electroweak precision observables between experiment and theory can be used to stress-test the Standard Model and probe new physics.
We provide an introduction to the physics of a warped extra dimension and the AdS/CFT correspondence. An AdS/CFT dictionary is given which leads to a 4D holographic view of the 5th dimension. With a particular emphasis on beyond the standard model ph
These lectures cover aspects of primordial cosmology with a focus on observational tests of physics beyond the Standard Model. The presentation is divided into two parts: In Part I, we study the production of new light particles in the hot big bang a
I introduce the consequences of neutrino mass and mixing in the dense environments of the early Universe and in astrophysical environments. Thermal and matter effects are reviewed in the context of a two-neutrino formalism, with methods of extension
The measurements performed at LEP and SLC have substantially improved the precision of the test of the Minimal Standard Model. The precision is such that there is sensitivity to pure weak radiative corrections. This allows to indirectly determine the
In these lectures I briefly review the Higgs mechanism of electroweak symmetry breaking and focus on the most relevant aspects of the phenomenology of the Standard Model Higgs boson at hadron colliders, namely the Tevatron and the Large Hadron Collid