ﻻ يوجد ملخص باللغة العربية
The amplitude for the neutrinoless double $beta$ ($0 ubetabeta$) decay of the two-neutron system, $nnto ppe^-e^-$, constitutes a key building block for nuclear-structure calculations of heavy nuclei employed in large-scale $0 ubetabeta$ searches. Assuming that the $0 ubetabeta$ process is mediated by a light-Majorana-neutrino exchange, a systematic analysis in chiral effective field theory shows that already at leading order a contact operator is required to ensure renormalizability. In this work, we develop a method to estimate the numerical value of its coefficient in analogy to the Cottingham formula and validate the result by reproducing the charge-independence-breaking contribution to the nucleon-nucleon scattering lengths. Our central result, while derived in the $overline{text{MS}}$ scheme, is given in terms of the renormalized amplitude $mathcal{A}_ u(|mathbf{p}|,|mathbf{p}^prime|)$, matching to which will allow one to determine the contact-term contribution in regularization schemes employed in nuclear-structure calculations. Our results thus greatly reduce a crucial uncertainty in the interpretation of searches for $0 ubetabeta$ decay.
We present a method to determine the leading-order (LO) contact term contributing to the $nn to pp e^-e^-$ amplitude through the exchange of light Majorana neutrinos. Our approach is based on the representation of the amplitude as the momentum integr
Accurate nuclear matrix elements (NMEs) for neutrinoless double beta decays of candidate nuclei are important for the design and interpretation of future experiments. Significant progress has been made in the modeling of these NMEs from first princip
The nuclear matrix elements that govern the rate of neutrinoless double beta decay must be accurately calculated if experiments are to reach their full potential. Theorists have been working on the problem for a long time but have recently stepped up
We present the first ab initio calculations of neutrinoless double beta decay matrix elements in $A=6$-$12$ nuclei using Variational Monte Carlo wave functions obtained from the Argonne $v_{18}$ two-nucleon potential and Illinois-7 three-nucleon inte
We discuss a mechanism of neutrinoless double beta decay, where neutrinos of different flavours come into play. This is realized by effective flavour-violating scalar interactions. As one consequence, we find that within the normal mass ordering the