ﻻ يوجد ملخص باللغة العربية
We evaluate a 5-dimensional Randall Sundrum type metric in the Lagrangian of the Einstein-Chern-Simons gravity, and then we derive an action and its corresponding field equations, for a 4-dimensional brane embedded in the 5-dimensional space-time of the theory, which in the limit l--0 leads to the 4-dimensional general relativity with cosmological constant. An interpretation of the h*a matter field present in the Einstein-Chern-Simons gravity action is given. As an application, we find some Friedmann-Lemaitre-Robertson-Walker cosmological solutions that exhibit accelerated behavior.
Five dimensional Chern-Simons theory with (anti-)de Sitter SO(1,5) or SO(2,4) gauge invariance presents an alternative to General Relativity with cosmological constant. We consider the zero-modes of its Kaluza-Klein compactification to four dimension
Using a unified approach of optical-mechanical analogy in a semiclassical formula, we evaluate the effect of Chern-Simons modified gravity on the quantum phase shift of de Broglie waves in neutron interferometry. The phase shift calculated here revea
We present a well-posed constraint-preserving scheme for evolving first-order metric perturbations on an arbitrary background with arbitrary source. We use this scheme to evolve the leading-order metric perturbation in order-reduced dynamical Chern-S
The gravitational memory effects of Chern-Simons modified gravity are considered in the asymptotically flat spacetime. If the Chern-Simons scalar does not directly couple with the ordinary matter fields, there are also displacement, spin and center-o
In this paper, we consider dynamical Chern-Simons gravity with the identification of the scalar field coupled though the Pontryagin density with the axion dark matter, and we discuss the effects of the parametric resonance on gravitational waves (GWs