ﻻ يوجد ملخص باللغة العربية
Experimental spin relaxation times in graphene, critical for spintronics and quantum information technologies, are two orders of magnitude below previous theoretical predictions for spin-phonon relaxation. Here, ab initio density-matrix dynamics simulations reveal that electric fields and substrates strongly reduce spin-phonon relaxation time to the nanosecond scale, in agreement with experiments. Our predicted out-of-plane to in-plane lifetime ratio exceeds 1/2 on boron nitride substrates, matching experiment unlike previous models, suggesting that spin-phonon relaxation is dominant in graphene at room temperature.
Fluids in porous media are commonly studied with analytical or simulation methods, usually assuming that the host medium is rigid. By evaluating the substrates response (relaxation) to the presence of the fluid we assess the error inherent in that as
In semiconductor spintronic devices, the semiconductor is usually lightly doped and nondegenerate, and moderate electric fields can dominate the carrier motion. We recently derived a drift-diffusion equation for spin polarization in the semiconductor
Theory of the electron spin relaxation in graphene on the SiO$_2$ substrate is developed. Charged impurities and polar optical surface phonons in the substrate induce an effective random Bychkov-Rashba-like spin-orbit coupling field which leads to sp
Compared with direct-gap semiconductors, the valley degeneracy of silicon and germanium opens up new channels for spin relaxation that counteract the spin degeneracy of the inversion-symmetric system. Here the symmetries of the electron-phonon intera
Terahertz field induced photocurrents in graphene were studied experimentally and by microscopic modeling. Currents were generated by cw and pulsed laser radiation in large area as well as small-size exfoliated graphene samples. We review general sym