ترغب بنشر مسار تعليمي؟ اضغط هنا

Electric field and substrate effects dominate spin-phonon relaxation in graphene

274   0   0.0 ( 0 )
 نشر من قبل Ravishankar Sundararaman
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Experimental spin relaxation times in graphene, critical for spintronics and quantum information technologies, are two orders of magnitude below previous theoretical predictions for spin-phonon relaxation. Here, ab initio density-matrix dynamics simulations reveal that electric fields and substrates strongly reduce spin-phonon relaxation time to the nanosecond scale, in agreement with experiments. Our predicted out-of-plane to in-plane lifetime ratio exceeds 1/2 on boron nitride substrates, matching experiment unlike previous models, suggesting that spin-phonon relaxation is dominant in graphene at room temperature.



قيم البحث

اقرأ أيضاً

172 - Hye-Young Kim 2008
Fluids in porous media are commonly studied with analytical or simulation methods, usually assuming that the host medium is rigid. By evaluating the substrates response (relaxation) to the presence of the fluid we assess the error inherent in that as sumption. One application is a determination of the ground state of 3He in slit and cylindrical pores. With the relaxation, there results a much stronger cohesion than would be found for a rigid host. Similar increased binding effects of relaxation are found for classical fluids confined within slit pores or nanotube bundles.
76 - Z. G. Yu , M. E. Flatte 2002
In semiconductor spintronic devices, the semiconductor is usually lightly doped and nondegenerate, and moderate electric fields can dominate the carrier motion. We recently derived a drift-diffusion equation for spin polarization in the semiconductor s by consistently taking into account electric-field effects and nondegenerate electron statistics and identified a high-field diffusive regime which has no analogue in metals. Here spin injection from a ferromagnet (FM) into a nonmagnetic semiconductor (NS) is extensively studied by applying this spin drift-diffusion equation to several typical injection structures such as FM/NS, FM/NS/FM, and FM/NS/NS structures. We find that in the high-field regime spin injection from a ferromagnet into a semiconductor is enhanced by several orders of magnitude. For injection structures with interfacial barriers, the electric field further enhances spin injection considerably. In FM/NS/FM structures high electric fields destroy the symmetry between the two magnets at low fields, where both magnets are equally important for spin injection, and spin injection becomes locally determined by the magnet from which carriers flow into the semiconductor. The field-induced spin injection enhancement should also be insensitive to the presence of a highly doped nonmagnetic semiconductor (NS$^+$) at the FM interface, thus FM/NS$^+$/NS structures should also manifest efficient spin injection at high fields. Furthermore, high fields substantially reduce the magnetoresistance observable in a recent experiment on spin injection from magnetic semiconductors.
Theory of the electron spin relaxation in graphene on the SiO$_2$ substrate is developed. Charged impurities and polar optical surface phonons in the substrate induce an effective random Bychkov-Rashba-like spin-orbit coupling field which leads to sp in relaxation by the Dyakonov-Perel mechanism. Analytical estimates and Monte Carlo simulations show that the corresponding spin relaxation times are between micro- to milliseconds, being only weakly temperature dependent. It is also argued that the presence of adatoms on graphene can lead to spin lifetimes shorter than nanoseconds.
Compared with direct-gap semiconductors, the valley degeneracy of silicon and germanium opens up new channels for spin relaxation that counteract the spin degeneracy of the inversion-symmetric system. Here the symmetries of the electron-phonon intera ction for silicon and germanium are identified and the resulting spin lifetimes are calculated. Room-temperature spin lifetimes of electrons in silicon are found to be comparable to those in gallium arsenide, however, the spin lifetimes in silicon or germanium can be tuned by reducing the valley degeneracy through strain or quantum confinement. The tunable range is limited to slightly over an order of magnitude by intravalley processes.
Terahertz field induced photocurrents in graphene were studied experimentally and by microscopic modeling. Currents were generated by cw and pulsed laser radiation in large area as well as small-size exfoliated graphene samples. We review general sym metry considerations leading to photocurrents depending on linear and circular polarized radiation and then present a number of situations where photocurrents were detected. Starting with the photon drag effect under oblique incidence, we proceed to the photogalvanic effect enhancement in the reststrahlen band of SiC and edge-generated currents in graphene. Ratchet effects were considered for in-plane magnetic fields and a structure inversion asymmetry as well as ratchets by non-symmetric patterned top gates. Lastly, we demonstrate that graphene can be used as a fast, broadband detector of terahertz radiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا