ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Faceted Representation Learning with Hybrid Architecture for Time Series Classification

74   0   0.0 ( 0 )
 نشر من قبل Zhenyu Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Time series classification problems exist in many fields and have been explored for a couple of decades. However, they still remain challenging, and their solutions need to be further improved for real-world applications in terms of both accuracy and efficiency. In this paper, we propose a hybrid neural architecture, called Self-Attentive Recurrent Convolutional Networks (SARCoN), to learn multi-faceted representations for univariate time series. SARCoN is the synthesis of long short-term memory networks with self-attentive mechanisms and Fully Convolutional Networks, which work in parallel to learn the representations of univariate time series from different perspectives. The component modules of the proposed architecture are trained jointly in an end-to-end manner and they classify the input time series in a cooperative way. Due to its domain-agnostic nature, SARCoN is able to generalize a diversity of domain tasks. Our experimental results show that, compared to the state-of-the-art approaches for time series classification, the proposed architecture can achieve remarkable improvements for a set of univariate time series benchmarks from the UCR repository. Moreover, the self-attention and the global average pooling in the proposed architecture enable visible interpretability by facilitating the identification of the contribution regions of the original time series. An overall analysis confirms that multi-faceted representations of time series aid in capturing deep temporal corrections within complex time series, which is essential for the improvement of time series classification performance. Our work provides a novel angle that deepens the understanding of time series classification, qualifying our proposed model as an ideal choice for real-world applications.



قيم البحث

اقرأ أيضاً

Multivariate time series naturally exist in many fields, like energy, bioinformatics, signal processing, and finance. Most of these applications need to be able to compare these structured data. In this context, dynamic time warping (DTW) is probably the most common comparison measure. However, not much research effort has been put into improving it by learning. In this paper, we propose a novel method for learning similarities based on DTW, in order to improve time series classification. Making use of the uniform stability framework, we provide the first theoretical guarantees in the form of a generalization bound for linear classification. The experimental study shows that the proposed approach is efficient, while yielding sparse classifiers.
While Semi-supervised learning has gained much attention in computer vision on image data, yet limited research exists on its applicability in the time series domain. In this work, we investigate the transferability of state-of-the-art deep semi-supe rvised models from image to time series classification. We discuss the necessary model adaptations, in particular an appropriate model backbone architecture and the use of tailored data augmentation strategies. Based on these adaptations, we explore the potential of deep semi-supervised learning in the context of time series classification by evaluating our methods on large public time series classification problems with varying amounts of labelled samples. We perform extensive comparisons under a decidedly realistic and appropriate evaluation scheme with a unified reimplementation of all algorithms considered, which is yet lacking in the field. We find that these transferred semi-supervised models show significant performance gains over strong supervised, semi-supervised and self-supervised alternatives, especially for scenarios with very few labelled samples.
Forecasting based on financial time-series is a challenging task since most real-world data exhibits nonstationary property and nonlinear dependencies. In addition, different data modalities often embed different nonlinear relationships which are dif ficult to capture by human-designed models. To tackle the supervised learning task in financial time-series prediction, we propose the application of a recently formulated algorithm that adaptively learns a mapping function, realized by a heterogeneous neural architecture composing of Generalized Operational Perceptron, given a set of labeled data. With a modified objective function, the proposed algorithm can accommodate the frequently observed imbalanced data distribution problem. Experiments on a large-scale Limit Order Book dataset demonstrate that the proposed algorithm outperforms related algorithms, including tensor-based methods which have access to a broader set of input information.
249 - Yang Jiao , Kai Yang , Shaoyu Dou 2020
Multivariate time series (MTS) data are becoming increasingly ubiquitous in diverse domains, e.g., IoT systems, health informatics, and 5G networks. To obtain an effective representation of MTS data, it is not only essential to consider unpredictable dynamics and highly variable lengths of these data but also important to address the irregularities in the sampling rates of MTS. Existing parametric approaches rely on manual hyperparameter tuning and may cost a huge amount of labor effort. Therefore, it is desirable to learn the representation automatically and efficiently. To this end, we propose an autonomous representation learning approach for multivariate time series (TimeAutoML) with irregular sampling rates and variable lengths. As opposed to previous works, we first present a representation learning pipeline in which the configuration and hyperparameter optimization are fully automatic and can be tailored for various tasks, e.g., anomaly detection, clustering, etc. Next, a negative sample generation approach and an auxiliary classification task are developed and integrated within TimeAutoML to enhance its representation capability. Extensive empirical studies on real-world datasets demonstrate that the proposed TimeAutoML outperforms competing approaches on various tasks by a large margin. In fact, it achieves the best anomaly detection performance among all comparison algorithms on 78 out of all 85 UCR datasets, acquiring up to 20% performance improvement in terms of AUC score.
High-dimensional time series are common in many domains. Since human cognition is not optimized to work well in high-dimensional spaces, these areas could benefit from interpretable low-dimensional representations. However, most representation learni ng algorithms for time series data are difficult to interpret. This is due to non-intuitive mappings from data features to salient properties of the representation and non-smoothness over time. To address this problem, we propose a new representation learning framework building on ideas from interpretable discrete dimensionality reduction and deep generative modeling. This framework allows us to learn discrete representations of time series, which give rise to smooth and interpretable embeddings with superior clustering performance. We introduce a new way to overcome the non-differentiability in discrete representation learning and present a gradient-based version of the traditional self-organizing map algorithm that is more performant than the original. Furthermore, to allow for a probabilistic interpretation of our method, we integrate a Markov model in the representation space. This model uncovers the temporal transition structure, improves clustering performance even further and provides additional explanatory insights as well as a natural representation of uncertainty. We evaluate our model in terms of clustering performance and interpretability on static (Fashion-)MNIST data, a time series of linearly interpolated (Fashion-)MNIST images, a chaotic Lorenz attractor system with two macro states, as well as on a challenging real world medical time series application on the eICU data set. Our learned representations compare favorably with competitor methods and facilitate downstream tasks on the real world data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا