ﻻ يوجد ملخص باللغة العربية
Understanding and controlling the transport properties of interacting fermions is a key forefront in quantum physics across a variety of experimental platforms. Motivated by recent experiments in 1D electron channels written on the $mathrm{LaAlO_3}$/$mathrm{SrTiO_3}$ interface, we analyse how the presence of different forms of spin-orbit coupling (SOC) can enhance electron pairing in 1D waveguides. We first show how the intrinsic Rashba SOC felt by electrons at interfaces such as $mathrm{LaAlO_3}$/$mathrm{SrTiO_3}$ can be reduced when they are confined in 1D. Then, we discuss how SOC can be engineered, and show using a mean-field Hartree-Fock-Bogoliubov model that SOC can generate and enhance spin-singlet and triplet electron pairing. Our results are consistent with two recent sets of experiments [Briggeman et al., arXiv:1912.07164; Sci. Adv. 6, eaba6337 (2020)] that are believed to engineer the forms of SOC investigated in this work, which suggests that metal-oxide heterostructures constitute attractive platforms to control the collective spin of electron bound states. However, our findings could also be applied to other experimental platforms involving spinful fermions with attractive interactions, such as cold atoms.
Valleytronics is rapidly emerging as an exciting area of basic and applied research. In two dimensional systems, valley polarisation can dramatically modify physical properties through electron-electron interactions as demonstrated by such phenomena
In the quest to understand high-temperature superconductivity in copper oxides, a vigorous debate has been focused on the pseudogap - a partial gap that opens over portions of the Fermi surface in the normal state above the bulk critical temperature
Quantum states induced by single-atomic-impurities are the current frontier of material and information science. Recently the spin-orbit coupled correlated kagome magnets are emerging as a new class of topological quantum materials, although the effe
Superconductivity and magnetism are usually the conflicting (competing) phenomena. We show, however, that in nanoscopic objects the electron pairing may promote the magnetic ordering. Such situation is possible at low temperatures in the quantum dots
We study the effect of strong spin-orbit coupling (SOC) on bound states induced by impurities in superconductors. The presence of spin-orbit coupling breaks the $mathbb{SU}(2)$-spin symmetry and causes the superconducting order parameter to have gene