ترغب بنشر مسار تعليمي؟ اضغط هنا

Single module identifiability in linear dynamic networks with partial excitation and measurement

334   0   0.0 ( 0 )
 نشر من قبل Shengling Shi
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Identifiability of a single module in a network of transfer functions is determined by the question whether a particular transfer function in the network can be uniquely distinguished within a network model set, on the basis of data. Whereas previous research has focused on the situations that all network signals are either excited or measured, we develop generalized analysis results for the situation of partial measurement and partial excitation. As identifiability conditions typically require a sufficient number of external excitation signals, this work introduces a novel network model structure such that excitation from unmeasured noise signals is included, which leads to less conservative identifiability conditions than relying on measured excitation signals only. More importantly, graphical conditions are developed to verify global and generic identifiability of a single module based on the topology of the dynamic network. Depending on whether the input or the output of the module can be measured, we present four identifiability conditions which cover all possible situations in single module identification. These conditions further lead to synthesis approaches for allocating excitation signals and selecting measured signals, to warrant single module identifiability. In addition, if the identifiability conditions are satisfied, indirect identification methods are developed to provide a consistent estimate of the module. All the obtained results are also extended to identifiability of multiple modules in the network.



قيم البحث

اقرأ أيضاً

This paper considers dynamic networks where vertices and edges represent manifest signals and causal dependencies among the signals, respectively. We address the problem of how to determine if the dynamics of a network can be identified when only par tial vertices are measured and excited. A necessary condition for network identifiability is presented, where the analysis is performed based on identifying the dependency of a set of rational functions from excited vertices to measured ones. This condition is further characterised by using an edge-removal procedure on the associated bipartite graph. Moreover, on the basis of necessity analysis, we provide a necessary and sufficient condition for identifiability in circular networks.
A recent research direction in data-driven modeling is the identification of dynamic networks, in which measured vertex signals are interconnected by dynamic edges represented by causal linear transfer functions. The major question addressed in this paper is where to allocate external excitation signals such that a network model set becomes generically identifiable when measuring all vertex signals. To tackle this synthesis problem, a novel graph structure, referred to as textit{directed pseudotree}, is introduced, and the generic identifiability of a network model set can be featured by a set of disjoint directed pseudotrees that cover all the parameterized edges of an textit{extended graph}, which includes the correlation structure of the process noises. Thereby, an algorithmic procedure is devised, aiming to decompose the extended graph into a minimal number of disjoint pseudotrees, whose roots then provide the appropriate locations for excitation signals. Furthermore, the proposed approach can be adapted using the notion of textit{anti-pseudotrees} to solve a dual problem, that is to select a minimal number of measurement signals for generic identifiability of the overall network, under the assumption that all the vertices are excited.
In this paper, we analyze the two-node joint clock synchronization and ranging problem. We focus on the case of nodes that employ time-to-digital converters to determine the range between them precisely. This specific design choice leads to a sawtoot h model for the captured signal, which has not been studied before from an estimation theoretic standpoint. In the study of this model, we recover the basic conclusion of a well-known article by Freris, Graham, and Kumar in clock synchronization. More importantly, we discover a surprising identifiability result on the sawtooth signal model: noise improves the theoretical condition of the estimation of the phase and offset parameters. To complete our study, we provide performance references for joint clock synchronization and ranging using the sawtooth signal model by presenting an exhaustive simulation study on basic estimation strategies under different realistic conditions. With our contributions in this paper, we enable further research in the estimation of sawtooth signal models and pave the path towards their industrial use for clock synchronization and ranging.
84 - Tong Zhou , Kailin Yin 2021
This paper investigates requirements on a networked dynamic system (NDS) such that its subsystem interactions can be solely determined from experiment data or reconstructed from its overall model. The NDS is constituted from several subsystems whose dynamics are described through a descriptor form. Except regularity on each subsystem and the whole NDS, no other restrictions are put on either subsystem dynamics or subsystem interactions. A matrix rank based necessary and sufficient condition is derived for the global identifiability of subsystem interactions, which leads to several conclusions about NDS structure identifiability when there is some a priori information. This matrix also gives an explicit description for the set of subsystem interactions that can not be distinguished from experiment data only. In addition, under a well-posedness assumption, a necessary and sufficient condition is obtained for the reconstructibility of subsystem interactions from an NDS descriptor form model. This condition can be verified with each subsystem separately and is therefore attractive in the analysis and synthesis of a large-scale NDS. Simulation results show that rather than increases monotonically with the distance of subsystem interactions to the undifferentiable set, the magnitude of the external output differences between two NDSs with distinct subsystem interactions increases much more rapidly when one of them is close to be unstable. In addition, directions of probing signals are also very important in distinguishing external outputs of distinctive NDSs.These findings are expected to be helpful in identification experiment designs, etc.
Controlling network systems has become a problem of paramount importance. Optimally controlling a network system with linear dynamics and minimizing a quadratic cost is a particular case of the well-studied linear-quadratic problem. When the specific topology of the network system is ignored, the optimal controller is readily available. However, this results in a emph{centralized} controller, facing limitations in terms of implementation and scalability. Finding the optimal emph{distributed} controller, on the other hand, is intractable in the general case. In this paper, we propose the use of graph neural networks (GNNs) to parametrize and design a distributed controller. GNNs exhibit many desirable properties, such as being naturally distributed and scalable. We cast the distributed linear-quadratic problem as a self-supervised learning problem, which is then used to train the GNN-based controllers. We also obtain sufficient conditions for the resulting closed-loop system to be input-state stable, and derive an upper bound on the trajectory deviation when the system is not accurately known. We run extensive simulations to study the performance of GNN-based distributed controllers and show that they are computationally efficient and scalable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا