ﻻ يوجد ملخص باللغة العربية
Lilith is a public Python library for constraining new physics from Higgs signal strength measurements. Version 2.0 of Lilith comes with an extensive XML database which includes the ATLAS and CMS Run 2 Higgs results for 36/fb, in addition the the Run 1 results. Both the code and the database were extended from the ordinary Gaussian approximation employed in Lilith-1.1 to using variable Gaussian and Poisson likelihoods. Moreover, Lilith-2 can make use of correlation matrices of arbitrary dimension. We will report on these novelties and ongoing developments. The importance of how correlations and uncertainties are treated will be demonstrated by means of detailed validations of the implemented experimental results. Moreover, we show the effects for global fits of reduced Higgs couplings, 2HDMs of Type I and Type II, and invisible Higgs decays. The program is publicly available on GitHub and can be used to constrain a wide class of new physics scenarios.
Lilith is a public Python library for constraining new physics from Higgs signal strength measurements. We here present version 2.0 of Lilith together with an updated XML database which includes the current ATLAS and CMS Run 2 Higgs results for 36/fb
The properties of the observed Higgs boson with mass around 125 GeV can be affected in a variety of ways by new physics beyond the Standard Model (SM). The wealth of experimental results, targeting the different combinations for the production and de
The properties of the observed Higgs boson with mass around 125 GeV are constrained by a wealth of experimental results targeting different combinations for the production and decay of a Higgs boson. In order to assess the compatibility of a non-Stan
After the discovery of a scalar resonance, resembling the Higgs boson, its couplings have been extensively studied via the measurement of various production and decay channels on the invariant mass peak. Recently, it has been suggested the possibilit
The program HiggsSignals confronts the predictions of models with arbitrary Higgs sectors with the available Higgs signal rate and mass measurements, resulting in a likelihood estimate. A new version of the program, HiggsSignals-2, is presented that