ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimizing Deep Neural Networks through Neuroevolution with Stochastic Gradient Descent

264   0   0.0 ( 0 )
 نشر من قبل HaiChao Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep neural networks (DNNs) have achieved remarkable success in computer vision; however, training DNNs for satisfactory performance remains challenging and suffers from sensitivity to empirical selections of an optimization algorithm for training. Stochastic gradient descent (SGD) is dominant in training a DNN by adjusting neural network weights to minimize the DNNs loss function. As an alternative approach, neuroevolution is more in line with an evolutionary process and provides some key capabilities that are often unavailable in SGD, such as the heuristic black-box search strategy based on individual collaboration in neuroevolution. This paper proposes a novel approach that combines the merits of both neuroevolution and SGD, enabling evolutionary search, parallel exploration, and an effective probe for optimal DNNs. A hierarchical cluster-based suppression algorithm is also developed to overcome similar weight updates among individuals for improving population diversity. We implement the proposed approach in four representative DNNs based on four publicly-available datasets. Experiment results demonstrate that the four DNNs optimized by the proposed approach all outperform corresponding ones optimized by only SGD on all datasets. The performance of DNNs optimized by the proposed approach also outperforms state-of-the-art deep networks. This work also presents a meaningful attempt for pursuing artificial general intelligence.



قيم البحث

اقرأ أيضاً

116 - Ziquan Liu , Yufei Cui , Jia Wan 2021
Deep neural networks with batch normalization (BN-DNNs) are invariant to weight rescaling due to their normalization operations. However, using weight decay (WD) benefits these weight-scale-invariant networks, which is often attributed to an increase of the effective learning rate when the weight norms are decreased. In this paper, we demonstrate the insufficiency of the previous explanation and investigate the implicit biases of stochastic gradient descent (SGD) on BN-DNNs to provide a theoretical explanation for the efficacy of weight decay. We identity two implicit biases of SGD on BN-DNNs: 1) the weight norms in SGD training remain constant in the continuous-time domain and keep increasing in the discrete-time domain; 2) SGD optimizes weight vectors in fully-connected networks or convolution kernels in convolution neural networks by updating components lying in the input feature span, while leaving those components orthogonal to the input feature span unchanged. Thus, SGD without WD accumulates weight noise orthogonal to the input feature span, and cannot eliminate such noise. Our empirical studies corroborate the hypothesis that weight decay suppresses weight noise that is left untouched by SGD. Furthermore, we propose to use weight rescaling (WRS) instead of weight decay to achieve the same regularization effect, while avoiding performance degradation of WD on some momentum-based optimizers. Our empirical results on image recognition show that regardless of optimization methods and network architectures, training BN-DNNs using WRS achieves similar or better performance compared with using WD. We also show that training with WRS generalizes better compared to WD, on other computer vision tasks.
We show analytically that training a neural network by conditioned stochastic mutation or neuroevolution of its weights is equivalent, in the limit of small mutations, to gradient descent on the loss function in the presence of Gaussian white noise. Averaged over independent realizations of the learning process, neuroevolution is equivalent to gradient descent on the loss function. We use numerical simulation to show that this correspondence can be observed for finite mutations,for shallow and deep neural networks. Our results provide a connection between two families of neural-network training methods that are usually considered to be fundamentally different.
Representations are fundamental to artificial intelligence. The performance of a learning system depends on the type of representation used for representing the data. Typically, these representations are hand-engineered using domain knowledge. More r ecently, the trend is to learn these representations through stochastic gradient descent in multi-layer neural networks, which is called backprop. Learning the representations directly from the incoming data stream reduces the human labour involved in designing a learning system. More importantly, this allows in scaling of a learning system for difficult tasks. In this paper, we introduce a new incremental learning algorithm called crossprop, which learns incoming weights of hidden units based on the meta-gradient descent approach, that was previously introduced by Sutton (1992) and Schraudolph (1999) for learning step-sizes. The final update equation introduces an additional memory parameter for each of these weights and generalizes the backprop update equation. From our experiments, we show that crossprop learns and reuses its feature representation while tackling new and unseen tasks whereas backprop relearns a new feature representation.
Gradient descent finds a global minimum in training deep neural networks despite the objective function being non-convex. The current paper proves gradient descent achieves zero training loss in polynomial time for a deep over-parameterized neural ne twork with residual connections (ResNet). Our analysis relies on the particular structure of the Gram matrix induced by the neural network architecture. This structure allows us to show the Gram matrix is stable throughout the training process and this stability implies the global optimality of the gradient descent algorithm. We further extend our analysis to deep residual convolutional neural networks and obtain a similar convergence result.
The internal states of most deep neural networks are difficult to interpret, which makes diagnosis and debugging during training challenging. Activation maximization methods are widely used, but lead to multiple optima and are hard to interpret (appe ar noise-like) for complex neurons. Image-based methods use maximally-activating image regions which are easier to interpret, but do not provide pixel-level insight into why the neuron responds to them. In this work we introduce an MCMC method: Langevin Dynamics Activation Maximization (LDAM), which is designed for diagnostic visualization. LDAM provides two affordances in combination: the ability to explore the set of maximally activating pre-images, and the ability to trade-off interpretability and pixel-level accuracy using a GAN-style discriminator as a regularizer. We present case studies on MNIST, CIFAR and ImageNet datasets exploring these trade-offs. Finally we show that diagnostic visualization using LDAM leads to a novel insight into the parameter averaging method for deep net training.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا