ﻻ يوجد ملخص باللغة العربية
Deep neural networks (DNNs) have achieved remarkable success in computer vision; however, training DNNs for satisfactory performance remains challenging and suffers from sensitivity to empirical selections of an optimization algorithm for training. Stochastic gradient descent (SGD) is dominant in training a DNN by adjusting neural network weights to minimize the DNNs loss function. As an alternative approach, neuroevolution is more in line with an evolutionary process and provides some key capabilities that are often unavailable in SGD, such as the heuristic black-box search strategy based on individual collaboration in neuroevolution. This paper proposes a novel approach that combines the merits of both neuroevolution and SGD, enabling evolutionary search, parallel exploration, and an effective probe for optimal DNNs. A hierarchical cluster-based suppression algorithm is also developed to overcome similar weight updates among individuals for improving population diversity. We implement the proposed approach in four representative DNNs based on four publicly-available datasets. Experiment results demonstrate that the four DNNs optimized by the proposed approach all outperform corresponding ones optimized by only SGD on all datasets. The performance of DNNs optimized by the proposed approach also outperforms state-of-the-art deep networks. This work also presents a meaningful attempt for pursuing artificial general intelligence.
Deep neural networks with batch normalization (BN-DNNs) are invariant to weight rescaling due to their normalization operations. However, using weight decay (WD) benefits these weight-scale-invariant networks, which is often attributed to an increase
We show analytically that training a neural network by conditioned stochastic mutation or neuroevolution of its weights is equivalent, in the limit of small mutations, to gradient descent on the loss function in the presence of Gaussian white noise.
Representations are fundamental to artificial intelligence. The performance of a learning system depends on the type of representation used for representing the data. Typically, these representations are hand-engineered using domain knowledge. More r
Gradient descent finds a global minimum in training deep neural networks despite the objective function being non-convex. The current paper proves gradient descent achieves zero training loss in polynomial time for a deep over-parameterized neural ne
The internal states of most deep neural networks are difficult to interpret, which makes diagnosis and debugging during training challenging. Activation maximization methods are widely used, but lead to multiple optima and are hard to interpret (appe