ترغب بنشر مسار تعليمي؟ اضغط هنا

Using wearable proximity sensors to characterize social contact patterns in a village of rural Malawi

192   0   0.0 ( 0 )
 نشر من قبل Laura Ozella
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measuring close proximity interactions between individuals can provide key information on social contacts in human communities. With the present study, we report the quantitative assessment of contact patterns in a village in rural Malawi, based on proximity sensors technology that allows for high-resolution measurements of social contacts. The system provided information on community structure of the village, on social relationships and social assortment between individuals, and on daily contacts activity within the village. Our findings revealed that the social network presented communities that were highly correlated with household membership, thus confirming the importance of family ties within the village. Contacts within households occur mainly between adults and children, and adults and adolescents. This result suggests that the principal role of adults within the family is the care for the youngest. Most of the inter-household interactions occurred among caregivers and among adolescents. We studied the tendency of participants to interact with individuals with whom they shared similar attributes (i.e., assortativity). Age and gender assortativity were observed in inter-household network, showing that individuals not belonging to the same family group prefer to interact with people with whom they share similar age and gender. Age disassortativity is observed in intra-household networks. Family members congregate in the early morning, during lunch time and dinner time. In contrast, individuals not belonging to the same household displayed a growing contact activity from the morning, reaching a maximum in the afternoon. The data collection infrastructure used in this study seems to be very effective to capture the dynamics of contacts by collecting high resolution temporal data and to give access to the level of information needed to understand the social context of the village.



قيم البحث

اقرأ أيضاً

Over the past several decades, naturally occurring and man-made mass casualty incidents (MCI) have increased in frequency and number, worldwide. To test the impact of such event on medical resources, simulations can provide a safe, controlled setting while replicating the chaotic environment typical of an actual disaster. A standardised method to collect and analyse data from mass casualty exercises is needed, in order to assess preparedness and performance of the healthcare staff involved. We report on the use of wearable proximity sensors to measure proximity events during a MCI simulation. We investigated the interactions between medical staff and patients, to evaluate the time dedicated by the medical staff with respect to the severity of the injury of the victims depending on the roles. We estimated the presence of the patients in the different spaces of the field hospital, in order to study the patients flow. Data were obtained and collected through the deployment of wearable proximity sensors during a mass casualty incident functional exercise. The scenario included two areas: the accident site and the Advanced Medical Post (AMP), and the exercise lasted 3 hours. A total of 238 participants simulating medical staff and victims were involved. Each participant wore a proximity sensor and 30 fixed devices were placed in the field hospital. The contact networks show a heterogeneous distribution of the cumulative time spent in proximity by participants. We obtained contact matrices based on cumulative time spent in proximity between victims and the rescuers. Our results showed that the time spent in proximity by the healthcare teams with the victims is related to the severity of the patients injury. The analysis of patients flow showed that the presence of patients in the rooms of the hospital is consistent with triage code and diagnosis, and no obvious bottlenecks were found.
Research on human social interactions has traditionally relied on self-reports. Despite their widespread use, self-reported accounts of behaviour are prone to biases and necessarily reduce the range of behaviours, and the number of subjects, that may be studied simultaneously. The development of ever smaller sensors makes it possible to study group-level human behaviour in naturalistic settings outside research laboratories. We used such sensors, sociometers, to examine gender, talkativeness and interaction style in two different contexts. Here, we find that in the collaborative context, women were much more likely to be physically proximate to other women and were also significantly more talkative than men, especially in small groups. In contrast, there were no gender-based differences in the non-collaborative setting. Our results highlight the importance of objective measurement in the study of human behaviour, here enabling us to discern context specific, gender-based differences in interaction style.
179 - L. Isella , M. Romano , A. Barrat 2011
Nosocomial infections place a substantial burden on health care systems and represent a major issue in current public health, requiring notable efforts for its prevention. Understanding the dynamics of infection transmission in a hospital setting is essential for tailoring interventions and predicting the spread among individuals. Mathematical models need to be informed with accurate data on contacts among individuals. We used wearable active Radio-Frequency Identification Devices to detect face-to-face contacts among individuals with a spatial resolution of about 1.5 meters, and a time resolution of 20 seconds. The study was conducted in a general pediatrics hospital ward, during a one-week period, and included 119 participants. Nearly 16,000 contacts were recorded during the study, with a median of approximately 20 contacts per participants per day. Overall, 25% of the contacts involved a ward assistant, 23% a nurse, 22% a patient, 22% a caregiver, and 8% a physician. The majority of contacts were of brief duration, but long and frequent contacts especially between patients and caregivers were also found. In the setting under study, caregivers do not represent a significant potential for infection spread to a large number of individuals, as their interactions mainly involve the corresponding patient. Nurses would deserve priority in prevention strategies due to their central role in the potential propagation paths of infections. Our study shows the feasibility of accurate and reproducible measures of the pattern of contacts in a hospital setting. The results are particularly useful for the study of the spread of respiratory infections, for monitoring critical patterns, and for setting up tailored prevention strategies. Proximity-sensing technology should be considered as a valuable tool for measuring such patterns and evaluating nosocomial prevention strategies in specific settings.
214 - J. Stehle , N. Voirin , A. Barrat 2011
Little quantitative information is available on the mixing patterns of children in school environments. Describing and understanding contacts between children at school would help quantify the transmission opportunities of respiratory infections and identify situations within schools where the risk of transmission is higher. We report on measurements carried out in a French school (6-12 years children), where we collected data on the time-resolved face-to-face proximity of children and teachers using a proximity-sensing infrastructure based on radio frequency identification devices. Data on face-to-face interactions were collected on October 1st and 2nd, 2009. We recorded 77,602 contact events between 242 individuals. Each child has on average 323 contacts per day with 47 other children, leading to an average daily interaction time of 176 minutes. Most contacts are brief, but long contacts are also observed. Contacts occur mostly within each class, and each child spends on average three times more time in contact with classmates than with children of other classes. We describe the temporal evolution of the contact network and the trajectories followed by the children in the school, which constrain the contact patterns. We determine an exposure matrix aimed at informing mathematical models. This matrix exhibits a class and age structure which is very different from the homogeneous mixing hypothesis. The observed properties of the contact patterns between school children are relevant for modeling the propagation of diseases and for evaluating control measures. We discuss public health implications related to the management of schools in case of epidemics and pandemics. Our results can help define a prioritization of control measures based on preventive measures, case isolation, classes and school closures, that could reduce the disruption to education during epidemics.
Most infectious diseases spread on a dynamic network of human interactions. Recent studies of social dynamics have provided evidence that spreading patterns may depend strongly on detailed micro-dynamics of the social system. We have recorded every s ingle interaction within a large population, mapping out---for the first time at scale---the complete proximity network for a densely-connected system. Here we show the striking impact of interaction-distance on the network structure and dynamics of spreading processes. We create networks supporting close (intimate network, up to ~1m) and longer distance (ambient network, up to ~10m) modes of transmission. The intimate network is fragmented, with weak ties bridging densely-connected neighborhoods, whereas the ambient network supports spread driven by random contacts between strangers. While there is no trivial mapping from the micro-dynamics of proximity networks to empirical epidemics, these networks provide a telling approximation of droplet and airborne modes of pathogen spreading. The dramatic difference in outbreak dynamics has implications for public policy and methodology of data collection and modeling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا