ﻻ يوجد ملخص باللغة العربية
Recent exoplanet statistics indicate that photo-evaporation has a great impact on the mass and bulk composition of close-in low-mass planets. While there are many studies addressing photo-evaporation of hydrogen-rich or water-rich atmospheres, no detailed investigation regarding rocky vapor atmospheres (or mineral atmospheres) has been conducted. Here, we develop a new 1-D hydrodynamic model of the UV-irradiated mineral atmosphere composed of Na, Mg, O, Si, their ions and electrons, includin molecular diffusion, thermal conduction, photo-/thermo-chemistry, X--ray and UV heating, and radiative line cooling (i.e., the effects of the optical thickness and non-LTE). The focus of this paper is on describing our methodology but presents some new findings. Our hydrodynamic simulations demonstrate that almost all of the incident X-ray and UV energy from the host-star is converted into and lost by the radiative emission of the coolant gas species such as Na, Mg, Mg$^+$, Si$^{2+}$, Na$^{3+}$ and Si$^{3+}$. For an Earth-size planet orbiting 0.02~AU around a young solar-type star, we find that the X-ray and UV heating efficiency is as small as $1 times 10^{-3}$, which corresponds to 0.3~$Mearth$/Gyr of the mass loss rate simply integrated over all the directions. Because of such efficient cooling, the photo-evaporation of the mineral atmosphere on hot rocky exoplanets with masses of $1Mearth$ is not massive enough to exert a great influence on the planetary mass and bulk composition. This suggests that close-in high-density exoplanets with sizes larger than the Earth radius survive in the high-UV environments.
We report the detection of an atmosphere on a rocky exoplanet, GJ 1132 b, which is similar to Earth in terms of size and density. The atmospheric transmission spectrum was detected using Hubble WFC3 measurements and shows spectral signatures of aeros
Transit observations in the MgI line of HD209458b revealed signatures of neutral magnesium escaping the upper atmosphere of the planet, while no atmospheric absorption was found in the MgII doublet. Here we present a 3D particle model of the dynamics
In the last decade, about a dozen giant exoplanets have been directly imaged in the IR as companions to young stars. With photometry and spectroscopy of these planets in hand from new extreme coronagraphic instruments such as SPHERE at VLT and GPI at
Modeling the outflow of planetary atmospheres is important for understanding the evolution of exoplanet systems and for interpreting their observations. Modern theoretical models of exoplanet atmospheres become increasingly detailed and multicomponen
We investigate the impact on convective numerical simulations of thermo-compositional diabatic processes. We focus our study on simulations with a stabilizing temperature gradient and a destabilizing mean-molecular weight gradient. We aim to establis