ﻻ يوجد ملخص باللغة العربية
Principal Component Analysis (PCA) is a popular method for dimension reduction and has attracted an unfailing interest for decades. Recently, kernel PCA has emerged as an extension of PCA but, despite its use in practice, a sound theoretical understanding of kernel PCA is missing. In this paper, we contribute lower and upper bounds on the efficiency of kernel PCA, involving the empirical eigenvalues of the kernel Gram matrix. Two bounds are for fixed estimators, and two are for randomized estimators through the PAC-Bayes theory. We control how much information is captured by kernel PCA on average, and we dissect the bounds to highlight strengths and limitations of the kernel PCA algorithm. Therefore, we contribute to the better understanding of kernel PCA. Our bounds are briefly illustrated on a toy numerical example.
The principle of optimism in the face of uncertainty is one of the most widely used and successful ideas in multi-armed bandits and reinforcement learning. However, existing optimistic algorithms (primarily UCB and its variants) are often unable to d
We derive upper and lower bounds on the fidelity susceptibility in terms of macroscopic thermodynamical quantities, like susceptibilities and thermal average values. The quality of the bounds is checked by the exact expressions for a single spin in a
Positive semidefinite rank (PSD-rank) is a relatively new quantity with applications to combinatorial optimization and communication complexity. We first study several basic properties of PSD-rank, and then develop new techniques for showing lower bo
The emergence of systems with non-volatile main memory (NVM) increases the interest in the design of emph{recoverable concurrent objects} that are robust to crash-failures, since their operations are able to recover from such failures by using state
Linear programming (polynomial) techniques are used to obtain lower and upper bounds for the potential energy of spherical designs. This approach gives unified bounds that are valid for a large class of potential functions. Our lower bounds are optim