ﻻ يوجد ملخص باللغة العربية
Spectral-timing analysis of the fast variability observed in X-rays is a powerful tool to study the physical and geometrical properties of the accretion/ejection flows in black-hole binaries. The origin of type-B quasi-periodic oscillations (QPO), predominantly observed in black-hole candidates in the soft-intermediate state, has been linked to emission arising from the relativistic jet. In this state, the X-ray spectrum is characterised by a soft-thermal blackbody-like emission due to the accretion disc, an iron emission line (in the 6-7 keV range), and a power-law like hard component due to Inverse-Compton scattering of the soft-photon source by hot electrons in a corona or the relativistic jet itself. The spectral-timing properties of MAXI J1348-630 have been recently studied using observations obtained with the NICER observatory. The data show a strong type-B QPO at ~4.5 Hz with increasing fractional rms amplitude with energy and positive lags with respect to a reference band at 2-2.5 keV. We use a variable-Comptonisation model that assumes a sinusoidal coherent oscillation of the Comptonised X-ray flux and the physical parameters of the corona at the QPO frequency, to fit simultaneously the energy-dependent fractional rms amplitude and phase lags of this QPO. We show that two physically-connected Comptonisation regions can successfully explain the radiative properties of the QPO in the full 0.8-10 keV energy range.
The fast variability observed in the X-ray emission from black-hole binaries has a very complex phenomenology, but offers the possibility to investigate directly the properties of the inner accretion flow. In particular, type-B oscillations in the 2-
We present a systematic spectral-timing analysis of a fast appearance/disappearance of a type-B quasi-periodic oscillation (QPO), observed in four NICER observations of MAXI J1348-630. By comparing the spectra of the period with and without the type-
We present the broadband spectral analysis of all the six hard, intermediate and soft state NuSTAR observations of the recently discovered transient black hole X-ray binary MAXI J1348-630 during its first outburst in 2019. We first model the data wit
Black hole low mass X-ray binaries in their hard spectral state are found to display two different correlations between the radio emission from the compact jets and the X-ray emission from the inner accretion flow. Here, we present a large data set o
We studied the multi-wavelength timing and spectral properties of the high mass X-ray binary MAXI J1348$-$630 during two successive outbursts of April and June 2019 using ALMA, Swift, Chandra, NuSTAR and NICER. The position of the source was measured