ﻻ يوجد ملخص باللغة العربية
Single- and multi-walled molybdenum disulfide (MoS$_2$) nanotubes have been coaxially grown on small diameter boron nitride nanotubes (BNNTs) which were synthesized from heteronanotubes by removing single-walled carbon nanotubes (SWCNTs), and systematically investigated by optical spectroscopy. The strong photoluminescence (PL) from single-walled MoS$_2$ nanotubes supported by core BNNTs is observed in this work, which evidences a direct band gap structure for single-walled MoS$_2$ nanotubes with around 6 - 7 nm in diameter. The observation is consistent with our DFT results that the single-walled MoS$_2$ nanotube changes from an indirect-gap to a direct-gap semiconductor when the diameter of a nanotube is more than around 5 nm. On the other hand, when there are SWCNTs inside the heteronanotubes of BNNTs and MoS$_2$ nanotubes, the PL signal is considerably quenched. The charge transfer and energy transfer between SWCNTs and single-walled MoS$_2$ nanotubes were examined through characterizations by PL, XPS, and Raman spectroscopy. Unlike the single-walled MoS$_2$ nanotubes, multi-walled MoS$_2$ nanotubes do not emit light. Single- and multi-walled MoS$_2$ nanotubes exhibit different Raman features in both resonant and non-resonant Raman spectra. The method of assembling heteronanotubes using BNNTs as templates provides an efficient approach for exploring the electronic and optical properties of other transition metal dichalcogenide nanotubes.
Photoluminescence (PL) has become a common tool to characterize various properties of single-walled carbon nanotube (SWCNT) chirality distribution and the level of tube individualization in SWCNT samples. Most PL studies employ conventional lamp ligh
A gear effect is demonstrated at parallel and cross junctions between boron nitride nanotubes (BNNTs) via atomistic simulations. The atoms of neighboring BNNTs are meshed together at the junctions like gear teeth through long-range non-covalent inter
We have measured the electric field modulated absorption of a sample of single-walled nanotubes (SWNT) suspended in a solid polyvinyl alcohol matrix. The electroabsorption (EA) spectrum roughly follows the first derivative of the absorption with resp
High pressure Raman experiments on Boron Nitride multi-walled nanotubes show that the intensity of the vibrational mode at ~ 1367 cm-1 vanishes at ~ 12 GPa and it does not recover under decompression. In comparison, the high pressure Raman experiment
We investigate the molecular sensing properties of carbon nanotube-boron nitride-carbon nanotube (CNT-BN-CNT) junctions. We demonstrate that the electrical conductance of such a junction changes in response to the binding of an analyte molecule to th