ﻻ يوجد ملخص باللغة العربية
Inter-Component Communication (ICC) is a key mechanism in Android. It enables developers to compose rich functionalities and explore reuse within and across apps. Unfortunately, as reported by a large body of literature, ICC is rather complex and largely unconstrained, leaving room to a lack of precision in apps modeling. To address the challenge of tracking ICCs within apps, state of the art static approaches such as Epicc, IccTA and Amandroid have focused on the documented framework ICC methods (e.g., startActivity) to build their approaches. In this work we show that ICC models inferred in these state of the art tools may actually be incomplete: the framework provides other atypical ways of performing ICCs. To address this limitation in the state of the art, we propose RAICC a static approach for modeling new ICC links and thus boosting previous analysis tasks such as ICC vulnerability detection, privacy leaks detection, malware detection, etc. We have evaluated RAICC on 20 benchmark apps, demonstrating that it improves the precision and recall of uncovered leaks in state of the art tools. We have also performed a large empirical investigation showing that Atypical ICC methods are largely used in Android apps, although not necessarily for data transfer. We also show that RAICC increases the number of ICC links found by 61.6% on a dataset of real-world malicious apps, and that RAICC enables the detection of new ICC vulnerabilities.
Validation of Android apps via testing is difficult owing to the presence of flaky tests. Due to non-deterministic execution environments, a sequence of events (a test) may lead to success or failure in unpredictable ways. In this work, we present an
Android, the #1 mobile app framework, enforces the single-GUI-thread model, in which a single UI thread manages GUI rendering and event dispatching. Due to this model, it is vital to avoid blocking the UI thread for responsiveness. One common practic
XML configuration files are widely used in Android to define an apps user interface and essential runtime information such as system permissions. As Android evolves, it might introduce functional changes in the configuration environment, thus causing
The process of developing a mobile application typically starts with the ideation and conceptualization of its user interface. This concept is then translated into a set of mock-ups to help determine how well the user interface embodies the intended
Mobile apps are now ubiquitous. Before developing a new app, the development team usually endeavors painstaking efforts to review many existing apps with similar purposes. The review process is crucial in the sense that it reduces market risks and pr