ﻻ يوجد ملخص باللغة العربية
We investigate the effect of uniaxial heterostrain on the interacting phase diagram of magic-angle twisted bilayer graphene. Using both self-consistent Hartree-Fock and density-matrix renormalization group calculations, we find that small strain values ($epsilon sim 0.1 - 0.2 %$) drive a zero-temperature phase transition between the symmetry-broken Kramers intervalley-coherent insulator and a nematic semi-metal. The critical strain lies within the range of experimentally observed strain values, and we therefore predict that strain is at least partly responsible for the sample-dependent experimental observations.
In the vicinity of the magic angle in twisted bilayer graphene (TBG), the two low-energy van Hove singularities (VHSs) become exceedingly narrow1-10 and many exotic correlated states, such as superconductivity, ferromagnetism, and topological phases,
The flat bands of magic-angle twisted bilayer graphene (MATBG) host strongly-correlated electronic phases such as correlated insulators, superconductors and a strange metal state. The latter state, believed to hold the key to a deeper understanding o
Twisted bilayer graphene near the magic angle exhibits remarkably rich electron correlation physics, displaying insulating, magnetic, and superconducting phases. Here, using measurements of the local electronic compressibility, we reveal that these p
In magic angle twisted bilayer graphene (MATBG), the moire superlattice potential gives rise to narrow electronic bands1 which support a multitude of many-body quantum phases. Further richness arises in the presence of a perpendicular magnetic field,
A quantum critical point is approached by applying pressure in a number of magnetic metals. The observed dependence of Tc on pressure necessarily means that the magnetic energy is coupled to the lattice. A first order phase transition occurs if this