ترغب بنشر مسار تعليمي؟ اضغط هنا

Strain-induced quantum phase transitions in magic angle graphene

103   0   0.0 ( 0 )
 نشر من قبل Nick Bultinck
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effect of uniaxial heterostrain on the interacting phase diagram of magic-angle twisted bilayer graphene. Using both self-consistent Hartree-Fock and density-matrix renormalization group calculations, we find that small strain values ($epsilon sim 0.1 - 0.2 %$) drive a zero-temperature phase transition between the symmetry-broken Kramers intervalley-coherent insulator and a nematic semi-metal. The critical strain lies within the range of experimentally observed strain values, and we therefore predict that strain is at least partly responsible for the sample-dependent experimental observations.



قيم البحث

اقرأ أيضاً

90 - Yu Zhang , Zhe Hou , Ya-Xin Zhao 2020
In the vicinity of the magic angle in twisted bilayer graphene (TBG), the two low-energy van Hove singularities (VHSs) become exceedingly narrow1-10 and many exotic correlated states, such as superconductivity, ferromagnetism, and topological phases, are observed11-16. Heterostrain, which is almost unavoidable in the TBG, can modify its single-particle band structure and lead to novel properties of the TBG that have never been considered so far. Here, we show that heterostrain in a TBG near the magic angle generates a new zero-energy flat band between the two VHSs. Doping the TBG to partially fill the zero-energy flat band, we observe a correlation-induced gap of about 10 meV that splits the flat band. By applying perpendicular magnetic fields, a large and linear response of the gap to magnetic fields is observed, attributing to the emergence of large orbital magnetic moments in the TBG when valley degeneracy of the flat band is lifted by electron-electron interactions. The orbital magnetic moment per moire supercell is measured as about 15 uB in the TBG.
The flat bands of magic-angle twisted bilayer graphene (MATBG) host strongly-correlated electronic phases such as correlated insulators, superconductors and a strange metal state. The latter state, believed to hold the key to a deeper understanding o f the electronic properties of MATBG, is obscured by the abundance of phase transitions; so far, this state could not be unequivocally differentiated from a metal undergoing frequent electron-phonon collisions. We report on transport measurements in superconducting (SC) MATBG in which the correlated insulator states were suppressed by screening. The uninterrupted metallic ground state features a T-linear resistivity extending over three decades in temperature, from 40 mK to 20 K, spanning a broad range of dopings including those where a correlation-driven Fermi surface reconstruction occurs. This strange-metal behavior is distinguished by Planckian scattering rates and a linear magneto-resistivity $rho propto B$. To the contrary, near charge neutrality or a fully-filled flat band, as well as for devices twisted away from the magic angle, the archetypal Fermi liquid behavior is recovered. Our measurements demonstrate the existence of a quantum-critical phase whose fluctuations dominate the metallic ground state. Further, a transition to the strange metal is observed upon suppression of the SC order, which suggests an intimate relationship between quantum fluctuations and superconductivity in MATBG.
99 - Uri Zondiner 2019
Twisted bilayer graphene near the magic angle exhibits remarkably rich electron correlation physics, displaying insulating, magnetic, and superconducting phases. Here, using measurements of the local electronic compressibility, we reveal that these p hases originate from a high-energy state with an unusual sequence of band populations. As carriers are added to the system, rather than filling all the four spin and valley flavors equally, we find that the population occurs through a sequence of sharp phase transitions, which appear as strong asymmetric jumps of the electronic compressibility near integer fillings of the moire lattice. At each transition, a single spin/valley flavor takes all the carriers from its partially filled peers, resetting them back to the vicinity of the charge neutrality point. As a result, the Dirac-like character observed near the charge neutrality reappears after each integer filling. Measurement of the in-plane magnetic field dependence of the chemical potential near filling factor one reveals a large spontaneous magnetization, further substantiating this picture of a cascade of symmetry breakings. The sequence of phase transitions and Dirac revivals is observed at temperatures well above the onset of the superconducting and correlated insulating states. This indicates that the state we reveal here, with its strongly broken electronic flavor symmetry and revived Dirac-like electronic character, is a key player in the physics of magic angle graphene, forming the parent state out of which the more fragile superconducting and correlated insulating ground states emerge.
In magic angle twisted bilayer graphene (MATBG), the moire superlattice potential gives rise to narrow electronic bands1 which support a multitude of many-body quantum phases. Further richness arises in the presence of a perpendicular magnetic field, where the interplay between moire and magnetic length scales leads to fractal Hofstadter subbands. In this strongly correlated Hofstadter platform, multiple experiments have identified gapped topological and correlated states, but little is known about the phase transitions between them in the intervening compressible regimes. Here, using a scanning single-electron transistor microscope to measure local electronic compressibility, we simultaneously unveil novel sequences of broken-symmetry Chern insulators (CIs) and resolve sharp phase transitions between competing states with different topological quantum numbers and spin/valley flavor occupations. Our measurements provide a complete experimental mapping of the energy spectrum and thermodynamic phase diagram of interacting Hofstadter subbands in MATBG. In addition, we observe full lifting of the degeneracy of the zeroth Landau levels (zLLs) together with level crossings, indicating moire valley splitting. We propose a unified flavor polarization mechanism to understand the intricate interplay of topology, interactions, and symmetry breaking as a function of density and applied magnetic field in this system.
180 - G. A. Gehring 2008
A quantum critical point is approached by applying pressure in a number of magnetic metals. The observed dependence of Tc on pressure necessarily means that the magnetic energy is coupled to the lattice. A first order phase transition occurs if this coupling exceeds a critical value: this is inevitable if diverges as Tc approaches zero. It is argued that this is the cause of the first order transition that is observed in many systems. Using Landau theory we obtain expressions for the boundaries of the region where phase separation occurs that agree well with experiments done on MnSi and other materials. The theory can be used to obtain very approximate values for the temperature and pressure at the tricritical point in terms of quantities measured at ambient pressure and the measured values of along the second order line. The values of the tricritical temperature for various materials obtained from Landau theory are too low but it is shown that the predicted values will rise if the effects of fluctuations are included.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا