ﻻ يوجد ملخص باللغة العربية
Physical theories that depend on many parameters or are tested against data from many different experiments pose unique challenges to parameter estimation. Many models in particle physics, astrophysics and cosmology fall into one or both of these categories. These issues are often sidestepped with very simplistic and statistically unsound ad hoc methods, involving naive intersection of parameter intervals estimated by multiple experiments, and random or grid sampling of model parameters. Whilst these methods are easy to apply, they exhibit pathologies even in low-dimensional parameter spaces, and quickly become problematic to use and interpret in higher dimensions. In this article we give clear guidance for going beyond these rudimentary procedures, suggesting some simple methods for performing statistically sound inference, and recommendations of readily-available software tools and standards that can assist in doing so. Our aim is to provide physicists with recommendations for reaching correct scientific conclusions, with only a modest increase in analysis burden.
We propose a formalism for the analysis of direct-detection dark-matter searches that covers all coherent responses for scalar and vector interactions and incorporates QCD constraints imposed by chiral symmetry, including all one- and two-body WIMP-n
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophys
We present a fast likelihood method for including event-level neutrino telescope data in parameter explorations of theories for new physics, and announce its public release as part of DarkSUSY 5.0.6. Our construction includes both angular and spectra
Discovering statistically significant patterns from databases is an important challenging problem. The main obstacle of this problem is in the difficulty of taking into account the selection bias, i.e., the bias arising from the fact that patterns ar
The recently proposed trans-Planckian censorship conjecture (TCC) amounts to the claim that inflation models with an inflationary energy scale larger than Lambda_inf^max ~ 10^9 GeV belong to the swampland, i.e., cannot be embedded into a consistent t