ترغب بنشر مسار تعليمي؟ اضغط هنا

AutoCaption: Image Captioning with Neural Architecture Search

70   0   0.0 ( 0 )
 نشر من قبل Xinxin Zhu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Image captioning transforms complex visual information into abstract natural language for representation, which can help computers understanding the world quickly. However, due to the complexity of the real environment, it needs to identify key objects and realize their connections, and further generate natural language. The whole process involves a visual understanding module and a language generation module, which brings more challenges to the design of deep neural networks than other tasks. Neural Architecture Search (NAS) has shown its important role in a variety of image recognition tasks. Besides, RNN plays an essential role in the image captioning task. We introduce a AutoCaption method to better design the decoder module of the image captioning where we use the NAS to design the decoder module called AutoRNN automatically. We use the reinforcement learning method based on shared parameters for automatic design the AutoRNN efficiently. The search space of the AutoCaption includes connections between the layers and the operations in layers both, and it can make AutoRNN express more architectures. In particular, RNN is equivalent to a subset of our search space. Experiments on the MSCOCO datasets show that our AutoCaption model can achieve better performance than traditional hand-design methods. Our AutoCaption obtains the best published CIDEr performance of 135.8% on COCO Karpathy test split. When further using ensemble technology, CIDEr is boosted up to 139.5%.



قيم البحث

اقرأ أيضاً

We present a neural architecture search (NAS) technique to enhance the performance of unsupervised image de-noising, in-painting and super-resolution under the recently proposed Deep Image Prior (DIP). We show that evolutionary search can automatical ly optimize the encoder-decoder (E-D) structure and meta-parameters of the DIP network, which serves as a content-specific prior to regularize these single image restoration tasks. Our binary representation encodes the design space for an asymmetric E-D network that typically converges to yield a content-specific DIP within 10-20 generations using a population size of 500. The optimized architectures consistently improve upon the visual quality of classical DIP for a diverse range of photographic and artistic content.
Recently, much attention has been spent on neural architecture search (NAS) approaches, which often outperform manually designed architectures on highlevel vision tasks. Inspired by this, we attempt to leverage NAS technique to automatically design e fficient network architectures for low-level image restoration tasks. In this paper, we propose a memory-efficient hierarchical NAS HiNAS (HiNAS) and apply to two such tasks: image denoising and image super-resolution. HiNAS adopts gradient based search strategies and builds an flexible hierarchical search space, including inner search space and outer search space, which in charge of designing cell architectures and deciding cell widths, respectively. For inner search space, we propose layerwise architecture sharing strategy (LWAS), resulting in more flexible architectures and better performance. For outer search space, we propose cell sharing strategy to save memory, and considerably accelerate the search speed. The proposed HiNAS is both memory and computation efficient. With a single GTX1080Ti GPU, it takes only about 1 hour for searching for denoising network on BSD 500 and 3.5 hours for searching for the super-resolution structure on DIV2K. Experimental results show that the architectures found by HiNAS have fewer parameters and enjoy a faster inference speed, while achieving highly competitive performance compared with state-of-the-art methods.
What is an effective expression that draws laughter from human beings? In the present paper, in order to consider this question from an academic standpoint, we generate an image caption that draws a laugh by a computer. A system that outputs funny ca ptions based on the image caption proposed in the computer vision field is constructed. Moreover, we also propose the Funny Score, which flexibly gives weights according to an evaluation database. The Funny Score more effectively brings out laughter to optimize a model. In addition, we build a self-collected BoketeDB, which contains a theme (image) and funny caption (text) posted on Bokete, which is an image Ogiri website. In an experiment, we use BoketeDB to verify the effectiveness of the proposed method by comparing the results obtained using the proposed method and those obtained using MS COCO Pre-trained CNN+LSTM, which is the baseline and idiot created by humans. We refer to the proposed method, which uses the BoketeDB pre-trained model, as the Neural Joking Machine (NJM).
153 - Xiong Zhang , Hongmin Xu , Hong Mo 2020
Neural Architecture Search (NAS) has shown great potentials in automatically designing scalable network architectures for dense image predictions. However, existing NAS algorithms usually compromise on restricted search space and search on proxy task to meet the achievable computational demands. To allow as wide as possible network architectures and avoid the gap between target and proxy dataset, we propose a Densely Connected NAS (DCNAS) framework, which directly searches the optimal network structures for the multi-scale representations of visual information, over a large-scale target dataset. Specifically, by connecting cells with each other using learnable weights, we introduce a densely connected search space to cover an abundance of mainstream network designs. Moreover, by combining both path-level and channel-level sampling strategies, we design a fusion module to reduce the memory consumption of ample search space. We demonstrate that the architecture obtained from our DCNAS algorithm achieves state-of-the-art performances on public semantic image segmentation benchmarks, including 84.3% on Cityscapes, and 86.9% on PASCAL VOC 2012. We also retain leading performances when evaluating the architecture on the more challenging ADE20K and Pascal Context dataset.
Modern solutions to the single image super-resolution (SISR) problem using deep neural networks aim not only at better performance accuracy but also at a lighter and computationally efficient model. To that end, recently, neural architecture search ( NAS) approaches have shown some tremendous potential. Following the same underlying, in this paper, we suggest a novel trilevel NAS method that provides a better balance between different efficiency metrics and performance to solve SISR. Unlike available NAS, our search is more complete, and therefore it leads to an efficient, optimized, and compressed architecture. We innovatively introduce a trilevel search space modeling, i.e., hierarchical modeling on network-, cell-, and kernel-level structures. To make the search on trilevel spaces differentiable and efficient, we exploit a new sparsestmax technique that is excellent at generating sparse distributions of individual neural architecture candidates so that they can be better disentangled for the final selection from the enlarged search space. We further introduce the sorting technique to the sparsestmax relaxation for better network-level compression. The proposed NAS optimization additionally facilitates simultaneous search and training in a single phase, reducing search time and train time. Comprehensive evaluations on the benchmark datasets show our methods clear superiority over the state-of-the-art NAS in terms of a good trade-off between model size, performance, and efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا