ﻻ يوجد ملخص باللغة العربية
Image captioning transforms complex visual information into abstract natural language for representation, which can help computers understanding the world quickly. However, due to the complexity of the real environment, it needs to identify key objects and realize their connections, and further generate natural language. The whole process involves a visual understanding module and a language generation module, which brings more challenges to the design of deep neural networks than other tasks. Neural Architecture Search (NAS) has shown its important role in a variety of image recognition tasks. Besides, RNN plays an essential role in the image captioning task. We introduce a AutoCaption method to better design the decoder module of the image captioning where we use the NAS to design the decoder module called AutoRNN automatically. We use the reinforcement learning method based on shared parameters for automatic design the AutoRNN efficiently. The search space of the AutoCaption includes connections between the layers and the operations in layers both, and it can make AutoRNN express more architectures. In particular, RNN is equivalent to a subset of our search space. Experiments on the MSCOCO datasets show that our AutoCaption model can achieve better performance than traditional hand-design methods. Our AutoCaption obtains the best published CIDEr performance of 135.8% on COCO Karpathy test split. When further using ensemble technology, CIDEr is boosted up to 139.5%.
We present a neural architecture search (NAS) technique to enhance the performance of unsupervised image de-noising, in-painting and super-resolution under the recently proposed Deep Image Prior (DIP). We show that evolutionary search can automatical
Recently, much attention has been spent on neural architecture search (NAS) approaches, which often outperform manually designed architectures on highlevel vision tasks. Inspired by this, we attempt to leverage NAS technique to automatically design e
What is an effective expression that draws laughter from human beings? In the present paper, in order to consider this question from an academic standpoint, we generate an image caption that draws a laugh by a computer. A system that outputs funny ca
Neural Architecture Search (NAS) has shown great potentials in automatically designing scalable network architectures for dense image predictions. However, existing NAS algorithms usually compromise on restricted search space and search on proxy task
Modern solutions to the single image super-resolution (SISR) problem using deep neural networks aim not only at better performance accuracy but also at a lighter and computationally efficient model. To that end, recently, neural architecture search (