ترغب بنشر مسار تعليمي؟ اضغط هنا

Computational Overhead of Locality Reduction in Binary Optimization Problems

90   0   0.0 ( 0 )
 نشر من قبل Elisabetta Valiante
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, there has been considerable interest in solving optimization problems by mapping these onto a binary representation, sparked mostly by the use of quantum annealing machines. Such binary representation is reminiscent of a discrete physical two-state system, such as the Ising model. As such, physics-inspired techniques -- commonly used in fundamental physics studies -- are ideally suited to solve optimization problems in a binary format. While binary representations can be often found for paradigmatic optimization problems, these typically result in k-local higher-order unconstrained binary optimization cost functions. In this work, we discuss the effects of locality reduction needed for the majority of the currently available quantum and quantum-inspired solvers that can only accommodate 2-local (quadratic) cost functions. General locality reduction approaches require the introduction of ancillary variables which cause an overhead over the native problem. Using a parallel tempering Monte Carlo solver on Microsoft Azure Quantum, as well as k-local binary problems with planted solutions, we show that post reduction to a corresponding 2-local representation the problems become considerably harder to solve. We further quantify the increase in computational hardness introduced by the reduction algorithm by measuring the variation of number of variables, statistics of the coefficient values, and the population annealing entropic family size. Our results demonstrate the importance of avoiding locality reduction when solving optimization problems.



قيم البحث

اقرأ أيضاً

In order to treat all-to-all connected quadratic binary optimization problems (QUBO) with hardware quantum annealers, an embedding of the original problem is required due to the sparsity of the hardwares topology. Embedding fully-connected graphs -- typically found in industrial applications -- incurs a quadratic space overhead and thus a significant overhead in the time to solution. Here we investigate this embedding penalty of established planar embedding schemes such as minor embedding on a square lattice, minor embedding on a Chimera graph, and the Lechner-Hauke-Zoller scheme using simulated quantum annealing on classical hardware. Large-scale quantum Monte Carlo simulation suggest a polynomial time-to-solution overhead. Our results demonstrate that standard analog quantum annealing hardware is at a disadvantage in comparison to classical digital annealers, as well as gate-model quantum annealers and could also serve as benchmark for improvements of the standard quantum annealing protocol.
We present Chook, an open-source Python-based tool to generate discrete optimization problems of tunable complexity with a priori known solutions. Chook provides a cross-platform unified environment for solution planting using a number of techniques, such as tile planting, Wishart planting, equation planting, and deceptive cluster loop planting. Chook also incorporates planted solutions for higher-order (beyond quadratic) binary optimization problems. The support for various planting schemes and the tunable hardness allows the user to generate problems with a wide range of complexity on different graph topologies ranging from hypercubic lattices to fully-connected graphs.
In this paper we focus on the unconstrained binary quadratic optimization model, maximize x^t Qx, x binary, and consider the problem of identifying optimal solutions that are robust with respect to perturbations in the Q matrix.. We are motivated to find robust, or stable, solutions because of the uncertainty inherent in the big data origins of Q and limitations in computer numerical precision, particularly in a new class of quantum annealing computers. Experimental design techniques are used to generate a diverse subset of possible scenarios, from which robust solutions are identified. An illustrative example with practical application to business decision making is examined. The approach presented also generates a surface response equation which is used to estimate upper bounds in constant time for Q instantiations within the scenario extremes. In addition, a theoretical framework for the robustness of individual x_i variables is considered by examining the range of Q values over which the x_i are predetermined.
62 - Amit Verma , Mark Lewis 2021
Quadratic Unconstrained Binary Optimization models are useful for solving a diverse range of optimization problems. Constraints can be added by incorporating quadratic penalty terms into the objective, often with the introduction of slack variables n eeded for conversion of inequalities. This transformation can lead to a significant increase in the size and density of the problem. Herein, we propose an efficient approach for recasting inequality constraints that reduces the number of linear and quadratic variables. Experimental results illustrate the efficacy.
70 - V. Dikovsky 2005
We discuss the contribution of the material type in metal wires to the electromagnetic fluctuations in magnetic microtraps close to the surface of an atom chip. We show that significant reduction of the magnetic noise can be achieved by replacing the pure noble metal wires with their dilute alloys. The alloy composition provides an additional degree of freedom which enables a controlled reduction of both magnetic noise and resistivity if the atom chip is cooled. In addition, we provide a careful re-analysis of the magnetically induced trap loss observed by Yu-Ju Lin et al. [Phys. Rev. Lett. 92, 050404 (2004)] and find good agreement with an improved theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا