ﻻ يوجد ملخص باللغة العربية
Recently, there has been considerable interest in solving optimization problems by mapping these onto a binary representation, sparked mostly by the use of quantum annealing machines. Such binary representation is reminiscent of a discrete physical two-state system, such as the Ising model. As such, physics-inspired techniques -- commonly used in fundamental physics studies -- are ideally suited to solve optimization problems in a binary format. While binary representations can be often found for paradigmatic optimization problems, these typically result in k-local higher-order unconstrained binary optimization cost functions. In this work, we discuss the effects of locality reduction needed for the majority of the currently available quantum and quantum-inspired solvers that can only accommodate 2-local (quadratic) cost functions. General locality reduction approaches require the introduction of ancillary variables which cause an overhead over the native problem. Using a parallel tempering Monte Carlo solver on Microsoft Azure Quantum, as well as k-local binary problems with planted solutions, we show that post reduction to a corresponding 2-local representation the problems become considerably harder to solve. We further quantify the increase in computational hardness introduced by the reduction algorithm by measuring the variation of number of variables, statistics of the coefficient values, and the population annealing entropic family size. Our results demonstrate the importance of avoiding locality reduction when solving optimization problems.
In order to treat all-to-all connected quadratic binary optimization problems (QUBO) with hardware quantum annealers, an embedding of the original problem is required due to the sparsity of the hardwares topology. Embedding fully-connected graphs --
We present Chook, an open-source Python-based tool to generate discrete optimization problems of tunable complexity with a priori known solutions. Chook provides a cross-platform unified environment for solution planting using a number of techniques,
In this paper we focus on the unconstrained binary quadratic optimization model, maximize x^t Qx, x binary, and consider the problem of identifying optimal solutions that are robust with respect to perturbations in the Q matrix.. We are motivated to
Quadratic Unconstrained Binary Optimization models are useful for solving a diverse range of optimization problems. Constraints can be added by incorporating quadratic penalty terms into the objective, often with the introduction of slack variables n
We discuss the contribution of the material type in metal wires to the electromagnetic fluctuations in magnetic microtraps close to the surface of an atom chip. We show that significant reduction of the magnetic noise can be achieved by replacing the