ﻻ يوجد ملخص باللغة العربية
Surgical risk increases significantly when patients present with comorbid conditions. This has resulted in the creation of numerous risk stratification tools with the objective of formulating associated surgical risk to assist both surgeons and patients in decision-making. The Surgical Outcome Risk Tool (SORT) is one of the tools developed to predict mortality risk throughout the entire perioperative period for major elective in-patient surgeries in the UK. In this study, we enhance the original SORT prediction model (UK SORT) by addressing the class imbalance within the dataset. Our proposed method investigates the application of diversity-based selection on top of common re-sampling techniques to enhance the classifiers capability in detecting minority (mortality) events. Diversity amongst training datasets is an essential factor in ensuring re-sampled data keeps an accurate depiction of the minority/majority class region, thereby solving the generalization problem of mainstream sampling approaches. We incorporate the use of the Solow-Polasky measure as a drop-in functionality to evaluate diversity, with the addition of greedy algorithms to identify and discard subsets that share the most similarity. Additionally, through empirical experiments, we prove that the performance of the classifier trained over diversity-based dataset outperforms the original classifier over ten external datasets. Our diversity-based re-sampling method elevates the performance of the UK SORT algorithm by 1.4$.
We present a new method for sampling rare and large fluctuations in a non-equilibrium system governed by a stochastic partial differential equation (SPDE) with additive forcing. To this end, we deploy the so-called instanton formalism that correspond
Objective: This study illustrates the ambiguity of ROC in evaluating two classifiers of 90-day LVAD mortality. This paper also introduces the precision recall curve (PRC) as a supplemental metric that is more representative of LVAD classifiers perfor
Semi-Supervised Learning (SSL) has shown its strong ability in utilizing unlabeled data when labeled data is scarce. However, most SSL algorithms work under the assumption that the class distributions are balanced in both training and test sets. In t
Deep neural networks, when optimized with sufficient data, provide accurate representations of high-dimensional functions; in contrast, function approximation techniques that have predominated in scientific computing do not scale well with dimensiona
Many pairwise classification tasks, such as paraphrase detection and open-domain question answering, naturally have extreme label imbalance (e.g., $99.99%$ of examples are negatives). In contrast, many recent datasets heuristically choose examples to