ﻻ يوجد ملخص باللغة العربية
We investigate properties of differential and difference operators annihilating certain finite-dimensional subspaces of exponential functions in two variables that are connected to the representation of real-valued trigonometric and hyperbolic functions. Although exponential functions appear in a variety of contexts, the motivation behind this work comes from considering subdivision schemes with the capability of preserving those exponential functions required for an exact description of surfaces parametrized in terms of trigonometric and hyperbolic functions.
A standard construction in approximation theory is mesh refinement. For a simplicial or polyhedral mesh D in R^k, we study the subdivision D obtained by subdividing a maximal cell of D. We give sufficient conditions for the module of splines on D to
We consider the decomposition of bounded linear operators on Hilbert spaces in terms of functions forming frames. Similar to the singular-value decomposition, the resulting frame decompositions encode information on the structure and ill-posedness of
The convergence rate of a multigrid method depends on the properties of the smoother and the so-called grid transfer operator. In this paper we define and analyze new grid transfer operators with a generic cutting size which are applicable for high o
This paper presents an enhanced version of our previous work, hybrid non-uniform subdivision surfaces [19], to achieve optimal convergence rates in isogeometric analysis. We introduce a parameter $lambda$ ($frac{1}{4}<lambda<1$) to control the rate o
This article presents and analyses an exponential integrator for the stochastic Manakov equation, a system arising in the study of pulse propagation in randomly birefringent optical fibers. We first prove that the strong order of the numerical approx