ترغب بنشر مسار تعليمي؟ اضغط هنا

Realizing the Promise of Automated Exposure Notification (AEN) Technology to Control the Spread of COVID-19: Recommendations for Smartphone App Deployment, Use, and Iterative Assessment

77   0   0.0 ( 0 )
 نشر من قبل Jesslyn Alekseyev
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Jesslyn Alekseyev




اسأل ChatGPT حول البحث

By using modern cryptographic techniques, privacy-preserving Automated Exposure Notification (AEN) technologies offer the promise of mitigating disease spread by automatically recording contacts between people over the incubation period while maintaining individual data privacy. Today, public health departments in States and other countries around the world are deploying AEN systems at a rapid pace. Though many organizations conducted research prior to deploying apps, experience around the world shows that contact-tracing apps are installed and used at relatively low levels. This whitepaper is intended to provide usable information for States who are considering the deployment of an AEN system, as well as to guide ongoing improvements for States that have already deployed. We outline the human factors considerations related to employing AEN systems with the ultimate goal of controlling the spread of COVID-19, including the GAEN consortium Exposure Notifications (EN) Express tool. We will also provide a practical design and implementation guide for States and others designing and deploying AEN systems, as well as a set of recommendations for assessing deployment of contact tracing apps and targeting areas of concern to improve efficacy of use during and after initial deployment. As a case study, we consider the commercial app deployed by the state of Pennsylvania (PA) and the ongoing efforts to drive user adoption there.



قيم البحث

اقرأ أيضاً

We apply optimal control theory to a generalized SEIR-type model. The proposed system has three controls, representing social distancing, preventive means, and treatment measures to combat the spread of the COVID-19 pandemic. We analyze such optimal control problem with respect to real data transmission in Italy. Our results show the appropriateness of the model, in particular with respect to the number of quarantined/hospitalized (confirmed and infected) and recovered individuals. Considering the Pontryagin controls, we show how in a perfect world one could have drastically diminish the number of susceptible, exposed, infected, quarantined/hospitalized, and death individuals, by increasing the population of insusceptible/protected.
139 - Donghan Yu , Yong Li , Fengli Xu 2017
In this paper we present the first population-level, city-scale analysis of application usage on smartphones. Using deep packet inspection at the network operator level, we obtained a geo-tagged dataset with more than 6 million unique devices that la unched more than 10,000 unique applications across the city of Shanghai over one week. We develop a technique that leverages transfer learning to predict which applications are most popular and estimate the whole usage distribution based on the Point of Interest (POI) information of that particular location. We demonstrate that our technique has an 83.0% hitrate in successfully identifying the top five popular applications, and a 0.15 RMSE when estimating usage with just 10% sampled sparse data. It outperforms by about 25.7% over the existing state-of-the-art approaches. Our findings pave the way for predicting which apps are relevant to a user given their current location, and which applications are popular where. The implications of our findings are broad: it enables a range of systems to benefit from such timely predictions, including operating systems, network operators, appstores, advertisers, and service providers.
The current situation of COVID-19 demands novel solutions to boost healthcare services and economic growth. A full-fledged solution that can help the government and people retain their normal lifestyle and improve the economy is crucial. By bringing into the picture a unique incentive-based approach, the strain of government and the people can be greatly reduced. By providing incentives for actions such as voluntary testing, isolation, etc., the government can better plan strategies for fighting the situation while people in need can benefit from the incentive offered. This idea of combining strength to battle against the virus can bring out newer possibilities that can give an upper hand in this war. As the unpredictable future develops, sharing and maintaining COVID related data of every user could be the needed trigger to kick start the economy and blockchain paves the way for this solution with decentralization and immutability of data.
Physical and mental well-being during the COVID-19 pandemic is typically assessed via surveys, which might make it difficult to conduct longitudinal studies and might lead to data suffering from recall bias. Ecological momentary assessment (EMA) driv en smartphone apps can help alleviate such issues, allowing for in situ recordings. Implementing such an app is not trivial, necessitates strict regulatory and legal requirements, and requires short development cycles to appropriately react to abrupt changes in the pandemic. Based on an existing app framework, we developed Corona Health, an app that serves as a platform for deploying questionnaire-based studies in combination with recordings of mobile sensors. In this paper, we present the technical details of Corona Health and provide first insights into the collected data. Through collaborative efforts from experts from public health, medicine, psychology, and computer science, we released Corona Health publicly on Google Play and the Apple App Store (in July, 2020) in 8 languages and attracted 7,290 installations so far. Currently, five studies related to physical and mental well-being are deployed and 17,241 questionnaires have been filled out. Corona Health proves to be a viable tool for conducting research related to the COVID-19 pandemic and can serve as a blueprint for future EMA-based studies. The data we collected will substantially improve our knowledge on mental and physical health states, traits and trajectories as well as its risk and protective factors over the course of the COVID-19 pandemic and its diverse prevention measures.
The rapid early spread of COVID-19 in the U.S. was experienced very differently by different socioeconomic groups and business industries. In this study, we study aggregate mobility patterns of New York City and Chicago to identify the relationship b etween the amount of interpersonal contact between people in urban neighborhoods and the disparity in the growth of positive cases among these groups. We introduce an aggregate Contact Exposure Index (CEI) to measure exposure due to this interpersonal contact and combine it with social distancing metrics to show its effect on positive case growth. With the help of structural equations modeling, we find that the effect of exposure on case growth was consistently positive and that it remained consistently higher in lower-income neighborhoods, suggesting a causal path of income on case growth via contact exposure. Using the CEI, schools and restaurants are identified as high-exposure industries, and the estimation suggests that implementing specific mobility restrictions on these point-of-interest categories are most effective. This analysis can be useful in providing insights for government officials targeting specific population groups and businesses to reduce infection spread as reopening efforts continue to expand across the nation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا