ترغب بنشر مسار تعليمي؟ اضغط هنا

I3DOL: Incremental 3D Object Learning without Catastrophic Forgetting

76   0   0.0 ( 0 )
 نشر من قبل Jiahua Dong
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

3D object classification has attracted appealing attentions in academic researches and industrial applications. However, most existing methods need to access the training data of past 3D object classes when facing the common real-world scenario: new classes of 3D objects arrive in a sequence. Moreover, the performance of advanced approaches degrades dramatically for past learned classes (i.e., catastrophic forgetting), due to the irregular and redundant geometric structures of 3D point cloud data. To address these challenges, we propose a new Incremental 3D Object Learning (i.e., I3DOL) model, which is the first exploration to learn new classes of 3D object continually. Specifically, an adaptive-geometric centroid module is designed to construct discriminative local geometric structures, which can better characterize the irregular point cloud representation for 3D object. Afterwards, to prevent the catastrophic forgetting brought by redundant geometric information, a geometric-aware attention mechanism is developed to quantify the contributions of local geometric structures, and explore unique 3D geometric characteristics with high contributions for classes incremental learning. Meanwhile, a score fairness compensation strategy is proposed to further alleviate the catastrophic forgetting caused by unbalanced data between past and new classes of 3D object, by compensating biased prediction for new classes in the validation phase. Experiments on 3D representative datasets validate the superiority of our I3DOL framework.



قيم البحث

اقرأ أيضاً

290 - Zhizhong Li , Derek Hoiem 2016
When building a unified vision system or gradually adding new capabilities to a system, the usual assumption is that training data for all tasks is always available. However, as the number of tasks grows, storing and retraining on such data becomes i nfeasible. A new problem arises where we add new capabilities to a Convolutional Neural Network (CNN), but the training data for its existing capabilities are unavailable. We propose our Learning without Forgetting method, which uses only new task data to train the network while preserving the original capabilities. Our method performs favorably compared to commonly used feature extraction and fine-tuning adaption techniques and performs similarly to multitask learning that uses original task data we assume unavailable. A more surprising observation is that Learning without Forgetting may be able to replace fine-tuning with similar old and new task datasets for improved new task performance.
Both generalized and incremental few-shot learning have to deal with three major challenges: learning novel classes from only few samples per class, preventing catastrophic forgetting of base classes, and classifier calibration across novel and base classes. In this work we propose a three-stage framework that allows to explicitly and effectively address these challenges. While the first phase learns base classes with many samples, the second phase learns a calibrated classifier for novel classes from few samples while also preventing catastrophic forgetting. In the final phase, calibration is achieved across all classes. We evaluate the proposed framework on four challenging benchmark datasets for image and video few-shot classification and obtain state-of-the-art results for both generalized and incremental few shot learning.
A plain well-trained deep learning model often does not have the ability to learn new knowledge without forgetting the previously learned knowledge, which is known as catastrophic forgetting. Here we propose a novel method, SupportNet, to efficiently and effectively solve the catastrophic forgetting problem in the class incremental learning scenario. SupportNet combines the strength of deep learning and support vector machine (SVM), where SVM is used to identify the support data from the old data, which are fed to the deep learning model together with the new data for further training so that the model can review the essential information of the old data when learning the new information. Two powerful consolidation regularizers are applied to stabilize the learned representation and ensure the robustness of the learned model. We validate our method with comprehensive experiments on various tasks, which show that SupportNet drastically outperforms the state-of-the-art incremental learning methods and even reaches similar performance as the deep learning model trained from scratch on both old and new data. Our program is accessible at: https://github.com/lykaust15/SupportNet
213 - Zhibo Fan , Yuchen Ma , Zeming Li 2021
Recently few-shot object detection is widely adopted to deal with data-limited situations. While most previous works merely focus on the performance on few-shot categories, we claim that detecting all classes is crucial as test samples may contain an y instances in realistic applications, which requires the few-shot detector to learn new concepts without forgetting. Through analysis on transfer learning based methods, some neglected but beneficial properties are utilized to design a simple yet effective few-shot detector, Retentive R-CNN. It consists of Bias-Balanced RPN to debias the pretrained RPN and Re-detector to find few-shot class objects without forgetting previous knowledge. Extensive experiments on few-shot detection benchmarks show that Retentive R-CNN significantly outperforms state-of-the-art methods on overall performance among all settings as it can achieve competitive results on few-shot classes and does not degrade the base class performance at all. Our approach has demonstrated that the long desired never-forgetting learner is available in object detection.
Catastrophic forgetting describes the fact that machine learning models will likely forget the knowledge of previously learned tasks after the learning process of a new one. It is a vital problem in the continual learning scenario and recently has at tracted tremendous concern across different communities. In this paper, we explore the catastrophic forgetting phenomena in the context of quantum machine learning. We find that, similar to those classical learning models based on neural networks, quantum learning systems likewise suffer from such forgetting problem in classification tasks emerging from various application scenes. We show that based on the local geometrical information in the loss function landscape of the trained model, a uniform strategy can be adapted to overcome the forgetting problem in the incremental learning setting. Our results uncover the catastrophic forgetting phenomena in quantum machine learning and offer a practical method to overcome this problem, which opens a new avenue for exploring potential quantum advantages towards continual learning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا